Job Description: The Localization team helps Ancestry's ideas and products look, feel and sound natural to users in their own countries. We collaborate with international engineering, product and marketing teams to steer products through the localization process and ensure successful launches across the globe.

You play a strategic role by building relationships with internal teams as well as outside vendors in order to establish needs, quotes, deadlines and budgets. You will utilize your project management and linguistic skills and your translation experience in order to ensure that our Localization process runs effectively and efficiently.

You manage localization for your product(s) from inception to launch, including resource allocation, scheduling and risk management. You work with translators, engineers, product managers, content authors and marketing managers to deliver Ancestry’s international site content and products on time and with high linguistic quality.

Key Responsibilities / Performance Requirements:
- Provide localization expertise and strategic insight to cross-functional teams and stakeholders to drive Ancestry’s product expansion globally and to ensure on-time delivery of international products with high linguistic quality.
- Drive localization program management for specific products or product groups from inception to launch, including scoping, resource allocation, scheduling, and budgeting, as well as quality, stakeholder, and risk management.
- Spearhead department initiatives including internationalization reviews, translation quality, process improvements, vendor strategy, and tools improvements.
- Work collaboratively with Ancestry’s global localization providers and stakeholders to drive efficiency and effectiveness of the localization process.

Required Skills:
- BA/BS degree or equivalent. 5+ years practical experience in a relevant field such as translation, localization, international business, or linguistics preferred.
- In-house experience as a Localization Project Manager, Localization Vendor Manager or Translator (all are preferred).
- Experience with industry localization tools (SDL TRADOS preferred).
- Multilingual capability in two or three of our core languages (French, French Canadian, Spanish, German, Swedish, Italian).
- 5 or more years experience as a professional translator into an Ancestry core language.
- Experience leading internal and external teams in linguistic QA processes.
- Ability to thrive under pressure and function effectively in a fast-paced environment, providing strong leadership skills and managing multiple projects simultaneously.
- Excellent communication skills and the ability to present I18n and L10n challenges and pitfalls to Marketing, Design, Engineering and Product Management teams.
- A proven track record in linguistic bug resolution.
- You are a self-starter, proactive, collaborative and dedicated to meeting deadlines and producing results with fine attention to detail.
- You thrive working in a culturally diverse and fast-paced environment.

Desired Skills:
- Familiarity with Ancestry sites and products.
- A background in genealogy and family history.
- Experience researching terminology found in historical records.
Experiments
Morphology

- Words have parts
 - staple+er
 - re+send
 - cough+ing
Questions experiments try to answer

- How are certain morphemes related?
- Do we store mono-morphemic words differently than poly-morphemic words? (is there a “morpheme” place in the brain)?
- Are irregular morphemes stored differently than regular morphemes?
How are morphemes and words related?

How are these words related?
1-nurse/doctor, pillar/column, tree/leaf
2-leave/leaf, burn/urn/ though/through, red/bread
3-teach/taught, speak/speaker, goat/goats, ox/oxen

How are these words related?
A-serenity/serene, water/watering, proof/prove, read/reread
B-receive/deceive, transmit/remit
C-transmit/transmission, redeem/redemption, fall/fell
electric/electricity, ten/tithe, brother/brethren, child/children
D-teach/teacher, friend/friendly, walk/walked
E-go/went, good/best, am/is
Lexical Decision Task

- Decide if word on screen is real word (rubbing) or phony word (flupping)
- Press one key for real word and another for phony word
- Reaction times are measured
Lexical Decision Task

comma
tubes
have
acid
govern
employ
jubbing
bribe
leckom
tubes
trade
government
command
acidic
kepter
flup
employer
allowing
broth
leckom
tribe
flupper
swap
rejont
allow
brother
gave
Lexical Decision Task

- Priming effect
 - If seeing one word makes a subsequent word recognized faster or slower
 - If there is a priming effect the words are related somehow in the mind
Types of Priming

A- real word repetition priming (tubes > tubes)
B- non-word repetition priming (leckom > leckom)
C- semantic priming (trade > swap; sea > ocean; mouse > cheese)
D- orthographic priming (tribe > bribe, gave > have)
E- morphological priming (govern > government; sing > sang; walk > walking)
F- non-word morphological priming (flup > flupper)
Types of Morphological Relationships

Transparent: govern/government
Opaque: arch/archer, court/courteous
Form only: again/against, broth/brother

Table 2
Mean Latencies (in Milliseconds), Error Data (%Error), and Priming Effects

<table>
<thead>
<tr>
<th>Relatedness</th>
<th>Transparent</th>
<th>Opaque</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>%Error</td>
<td>M</td>
</tr>
<tr>
<td>Related primed</td>
<td>570</td>
<td>2.7</td>
<td>598</td>
</tr>
<tr>
<td>Control primed</td>
<td>597</td>
<td>4.5</td>
<td>620</td>
</tr>
<tr>
<td>Priming effect</td>
<td>27</td>
<td>1.8</td>
<td>22</td>
</tr>
</tbody>
</table>
Tool

- DMDX, Psyscope and laptop
Do we store mono-morphemic words differently than poly-morphemic words?

- How can we look in the brain and see?
Do we store mono-morphemic words differently than poly-morphemic words?

- How can we look in the brain and see?
Do we store mono-morphemic words differently than poly-morphemic words?

- How can we look in the brain and see?
- Brain damage which is called aphasia
Two important language areas
Badecker 2001

- CSS (65 years old) suffered a left cerebro-vascular accident in 1990, resulting in lexical impairments manifested in reading, repetition, and oral and written naming tasks.
- Apart from word-finding problems, CSS's spoken output is fluent and he exhibits no apparent comprehension impairment.

<table>
<thead>
<tr>
<th>Picture naming</th>
<th>Naming from definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>“butterfly”</td>
<td>Slender-bodied insect with broad, often brightly-colored wings.</td>
</tr>
</tbody>
</table>

- Monomorphemes: 80% correct
- Polymorphemes: 50% correct!
Are irregular morphemes stored differently than regular morphemes?

- MRIs show what part of brain is used.
- EEGs show patterns of activation.
Tool

- MRI
Tool

- EEG
Theories of Morphology

• Full listing
 - All words have separate entry in mental lexicon
 • Sing, sang, singing, song, singer, sings
 - Processing entails lookup

• Full parsing
 - Only base words are stored in mental lexicon
 - Rules tell you how words go together
 • Stored: sing
 • Rule: add -er to form “person who ___”
 • Rule: add : -s for third person singular
Theories of Morphology

- Dual route
 - Regulars are derived by rule
 - Irregulars are stored and looked up
Theories of Morphology

- How are new words processed?
 - Full listing
 - Some kind of analogy to stored words needed
 - Full parsing
 - Just apply the rules that already exist
 - Dual route
 - Apply rules that exist to form regulars
 - Some kind of analogy may occasionally apply (brang)
Theories of Morphology

- How is word frequency represented?
 - Full listing
 - Only bases are stored and have frequency
 - Full parsing
 - All words, not just bases, have frequency
 - Dual route
 - Only regular bases have frequency, not derived forms
 - Irregulars have frequency