Let's disregard nasal assimilation. Let's disregard the [d] and [ɾ] alternation and focus only on [b] and [β] in 1-4.

[b] is [-continuous] and [β] is [+continuous].

There are two minimal pairs:

\[
\begin{array}{ll}
\text{abən} & \text{aβən} \\
\text{abɛ} & \text{aβɛ}
\end{array}
\]

different meanings
different meanings

So, [b] and [β] belong to different phonemes:

\[
\begin{array}{ccc}
/b/ & & /β/ \\
| & | & | \\
[b] & & [β]
\end{array}
\]

But, [b] and [β] must be allophones of the same phoneme because they appear in the same morpheme:

\[
\begin{array}{lll}
\text{mbən} & \text{aβən} & \text{dance} \\
\text{mbɛ} & \text{aβɛ} & \text{planted}
\end{array}
\]
[b] and [ß] also can be allophones of the same phoneme because they are in complementary distribution:

```
/ß/
     /
[b]    [ß]
```

[b] occurs after nasals and [ß] between vowels

How can two allophones belong to the same phoneme and at the same time belong to different phonemes? The only way is if there are two phonemes that share an allophone:

```
/b/  /ß/
    /
[b]    [ß]
```

The same thing happens in English. [m] is an allophone of /m/ in words like amount, money, but [m] is also an allophone of /n/ in words like u[m]popular, dou[m]pour, no[m]political. So,

```
/m/  /n/
    /
[m]    [n]
```