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ABSTRACT 
 
 
 

MEMORY-BASED TONE RECOGNITION OF 
 

CANTONESE SYLLABLES 
 
 
 

Michael Emonts 
 

Department of Linguistics 
 

Master of Arts 
 
 
 

Speech recognition has only recently been applied to Cantonese.  Considerable 

effort, however, has been spent in recognizing Mandarin, the standard dialect of 

Chinese.  Prior to this thesis, the only published work on monosyllabic Cantonese tone 

recognition is from Tan Lee et al. (1993,1995).  This thesis is the first of its kind in that 

it explores memory-based learning as a viable approach for Cantonese tone recognition. 

The memory-based learning algorithm employed in this thesis outperforms the 

highly respected and widely used neural network approach.  Various numbers of tones 

and features are modeled to find the best method for feature selection and extraction.  

To further optimize this approach, experiments are performed to isolate the best feature 

weighting method, best class voting weights method, and the best number of k-values to 

implement.  A detailed error analysis is also reported. 



 

This thesis will prove valuable as a future reference for memory-based 

learning in application to more complex tasks such as continuous speech tone 

recognition.
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INTRODUCTION 
 

An indispensable component of any Chinese speech recognizer is a tone 

recognizer.  This thesis is the first of its kind in that it explores memory-based learning as 

a viable approach for Cantonese tone recognition. 

Speech recognition has only recently been applied to Cantonese.  Considerable 

effort, however, has been spent in recognizing Mandarin, the standard dialect of Chinese.  

Prior to this thesis, the only published work on monosyllabic Cantonese tone recognition 

is from Tan Lee et al. (1995) at the Chinese University of Hong Kong. 

Using neural network tone recognition, Lee et al. reported 89.0% accuracy in their 

speaker-dependent system.  The memory-based learning algorithm employed in this 

thesis is shown to obtain 90.9% in a speaker-dependent system (81.8% in a speaker-

independent system), thus outperforming the highly respected and widely used neural 

network approach. 

Various numbers of tones and features are modeled to find the best method for 

feature selection and extraction.  To further optimize this approach, experiments are 

performed to isolate the best feature weighting method, best class voting weights method, 

and the best number of k-values to implement.  A detailed error analysis is also reported. 

 It is hoped that this thesis will prove valuable as a future reference for memory-

based learning in application to more complex tasks, such as continuous speech 

recognition. 

 This thesis comprises 4 chapters.  Chapter 1 presents a brief introduction of 

Cantonese phonology, emphasizing areas relevant to tone recognition as well as a review 

of published literature regarding tone recognition.  Chapter 2 summarizes the 
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methodology of the approach used in this thesis.  Results and conclusions are then 

presented in Chapters 3 and 4 respectively. 
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1 Review of Literature 
 
 In order to better understand the issues regarding Cantonese tone recognition, a 

review of literature is presented in this chapter.  Following a brief introduction of the 

Cantonese language, aspects of Cantonese phonology relevant to tone recognition are 

presented.  A detailed discussion of Cantonese tones follows, with the chapter concluding 

with a brief overview of published research in tone recognition. 

 

1.1  Cantonese Language 

 Cantonese is one of many dialects of Chinese.  It should be noted that the term 

‘dialect’ might be misleading, as dialects of Chinese are not necessarily mutually 

intelligible.  Most dialects of Chinese do, however, share a common writing system.  This 

fact, along with cultural and political motivations, justifies its classification as a dialect of 

Chinese.  There exists no standardized written form for Cantonese.  Cantonese-speakers 

use the standard Chinese writing style which is very similar to Mandarin in terms of 

vocabulary and grammar. 

 Cantonese is primarily spoken in the southern Chinese provinces of Guangdong 

and Gwongxi as well as in the Chinese territories of Hong Kong and Macau.  Emigration 

from these areas has lead to scattered Cantonese-speaking communities throughout the 

world.  Varieties of Cantonese can be heard in Singapore, Malaysia, as well as in various 

cities in Australia, Europe, and North America.   

 Worldwide, there are over 40 million native speakers of Cantonese, or 

approximately 4.0% of the total population of China.  Cantonese pales in comparison to 
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Mandarin, which is spoken by over 700 million speakers, or 71.5% of the total population 

of China.  In fact, Cantonese only ranks 4th among Chinese dialects as there are more 

speakers of Wu (7.5%) and Min (5.6%) than Cantonese (Bauer and Benedict 1997). 

 Linguistically, Cantonese receives more attention than other Chinese dialects such 

as Wu and Min.  Cantonese-speaking areas in China, as well as Hong Kong and Macau 

have prospered economically.  Until recently, the vast majority of overseas Chinese were 

Cantonese-speakers for this reason.  Many areas of China also consider Cantonese as a 

prestigious dialect of Chinese.  For this same reason, many now consider Cantonese as 

spoken in Hong Kong to be the Cantonese standard. 

 Cantonese has a complicated tone system (see Chapter 1.3.1).  To illustrate the 

importance of tones, consider the antonyms maai ‘to buy’ and maai ‘to sell’.  The first 

word is pronounced with a low-rising tone; the second with a low-level tone.  Even a 

slight change in intonation may result in a severe communication problem.  The 

importance of tones can be further illustrated with the fact that 98.9% of Chinese have a 

surname that differs from another surname by tone only (Zhang et al. 2002). 

 

1.2  Cantonese Syllables 

1.2.1 Syllable Structure 
 
 Syllable structure for Chinese, and particularly in Cantonese, is extremely simple.  

Cantonese syllables only occur in four variations: V, CV, VC, or CVC.  This can be 

collectively represented as (C)V(C).  The initial consonant may be any valid consonant in 

Cantonese, or none at all.  V is a mandatory vowel which may also be a diphthong.  The 
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optional final consonant may only be a nasal (i.e. /m/, /n/, or /ng/) or a voiceless 

unaspirated stop (i.e. /p/, /t/, /k/).  None of the consonants may be a consonant cluster. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-1 A Cantonese Syllable’s 3 Parts: Initial, Final, and Tone 

 
 
 
 Chinese linguists have traditionally viewed the Chinese syllable structure to 

consist of an initial part, a final part, and an overlying tone (Figure 1-1).  The initial part 

consists of either a voiced or an unvoiced consonant in Cantonese; it may also be null.  

The final, or rime, is comprised of a mandatory vowel or diphthong followed by an 

optional coda.  The tone is an intonational feature extending over the entire syllable. 

 Cantonese is one of several languages in which tonal contour carries lexical 

meaning.  In other words, the tone associated with a syllable carries an essential element 

of the syllable, without which comprehension is very difficult.  A Cantonese syllable 

spoken in isolation with an incorrect tone is just as difficult to comprehend as if one of 

the syllable’s phonemes were replaced with another.  Figure 1-2 further illustrates this by 

providing 9 different Cantonese words that differ by tone only.  The romanization system 

as well as an introduction to each of the tones will be introduced in the next section. 

 

 
Tone

 Final Initial 
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Romanization Character Meaning 

si1 絲 ‘poem’ 
si2 使 ‘history’ 
si3 試 ‘to test’ 
si4 時 ‘time’ 
si5 市 ‘market’ 
si6 事 ‘thing’ 
sik7 色 ‘color’ 
sip8 攝 ‘to absorb’ 
sik9 食 ‘to eat’ 

Figure 1-2 Syllable si Contrasted in 9 Different Tones 

 
 

1.2.2 Unaspirated Stops 
 
 An interesting feature in Cantonese is the potential for unaspirated stops at the 

end of syllables.  Unaspirated stops are a vestige from Middle Chinese still preserved in 

modern Cantonese and provide evidence supporting the antiquity of the Cantonese 

dialect.  Figure 1-3 shows an example of each of the three unaspirated stops in 

Cantonese. 

 
 

Romanization Character Meaning 
sat1 失 ‘to lose’ 
sak1 塞 ‘to block’ 
sap1 濕 ‘wet’ 

Figure 1-3 Examples of Unaspirated Stops in Cantonese 

 
 
 
 Each of the three unaspirated stops (either /p/, /t/, or /k/) is pronounced like the 

regular consonant except that it is unreleased.  The [t] in sat is pronounced by touching 

the tongue to the alveolar ridge behind the teeth, but then no air is released.  Similarly, 
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the [p] in sap is pronounced by bringing both lips together, but then are not reopened, 

thus preventing the release of air. 

 Distinguishing between the three can prove very difficult for learners of 

Cantonese as all three tend to sound like a glottal stop.  Nevertheless, it is vitally 

important for Cantonese speakers to do so in order to distinguish between the minimal 

pairs presented above in Figure 1-3.   

 As will be shown later, unaspirated stops play a very important part in Cantonese 

tone recognition as they are tied to three of the tones in Cantonese. 

 

1.2.3 Vowel Length 
 
 Another interesting aspect of Cantonese is that vowel length is significant.  The 

word gai ‘chicken’, for example, is pronounced with a very short diphthong.  The word 

gaai ‘street’ contains a longer diphthong.  Each word differs in vowel length and of 

course in lexical meaning. 

 In Cantonese, there are 13 vowels (7 long, 6 short) and 10 diphthongs (4 long, 6 

short).  Figure 1-4 shows the Cantonese vowel system with long vowels in bold.  Vowel 

pairs (e.g. /i/ and /i/) are allophones of each other, conditioned by the syllable coda.  It is 

clear from Figure 1-4 that Cantonese allophones differ by not only vowel length but also 

vowel quality.  Interestingly, each of the short vowel allophones is more neutralized than 

its longer equivalent.  The difference in vowel quality is clearly audible in monophthongs 

such as the distinction between sam1 ‘heart’ and saam1 ‘three’. 
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 Front 
 Unrounded Rounded 

Central Back 

High i yu  u 
Mid-high i   u 
Mid e eu  o 
Mid-low e eu a o 
Low   aa  

Figure 1-4 Cantonese Vowels (Based on Bauer and Benedict 1997) 

 
 
 
 Figure 1-5 shows the Cantonese diphthongs.  Again, the long vowels are in bold 

face.  With diphthongs, a difference in vowel quality is arguably undetectable as, for 

example, in the gai/gaai distinction mentioned earlier.  Unlike Mandarin, there are no 

triphthongs in Cantonese. 

 
 

Diphthong Base Vowel 
+ i + u 

i  iu 
e ei  
eu   
eu eui  
a ai au 

aa aai aau 
u ui  
o  ou 
o oi  

Figure 1-5 Cantonese Diphthongs (Based on Bauer and Benedict 1997) 

 
 
 
 In “Modern Cantonese Phonology”, work done by Li Xingde in 1985 is presented 

(Bauer and Benedict 1997).  Figure 1-6 is based on Li’s work and shows the average 

duration of 5 types of finals in milliseconds. 
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Type of 

Final 
Average 
Duration

V: 280 ms. 
V:Cnasal 196 ms. 

V:Cstop 159 ms. 

VCnasal 99 ms. 

VCstop 83 ms. 

Figure 1-6 Average Duration of 5 Types of Finals (from Bauer and Benedict 1997) 

 
 
 
 Average duration for any given long vowel is 212 milliseconds ((280 + 196 + 

159) / 3).  The average duration for any given short vowel, however, is only 91 

milliseconds ((99 + 83) / 2).  Interestingly, the average duration for a long vowel with no 

coda is 280 milliseconds, whereas the duration of an unreleased stop is quite shorter at 

159 milliseconds.  Note that data for short vowels with no coda are not represented in 

Figure 1-6. 

 

1.3  Cantonese Tones 

1.3.1 Definition of Tone 
 
 A ‘tone’ is simply the movement of pitch (or fundamental frequency) over time.  

The greater the number of vibrations in a speaker’s vocal cords, the higher the resultant 

fundamental frequency.  Pitch is measured in Hertz (Hz) and signifies the number of 

vibrations per second.  A speech sample with a fundamental frequency of 200 Hz, for 

example, means that the vocal cords opened and closed 200 times in one second. 

 Although tones are lexical in Cantonese, Cantonese words do have a consistent 

range of acceptable pitches and contours.  Acceptable pitches and contours are different 



 10

for each speaker and for each syllable’s context.  It has been shown, for example, that a 

woman’s low tone may be pronounced at the same pitch as a man’s high tone, or indeed 

higher (Matthews and Yip 1994).  The absolute values of fundamental frequencies are not 

as important as the relative heights compared to nearby syllables. 

 Not only is the pitch variation great among different speakers, but it also exists 

within an individual’s speech.  Duplicating one’s tonal contour is nearly impossible.  

Fundamental frequency is easily affected by one’s physiological condition, speaking 

style, and emotional status (Lau et al. 2000b).  If a speaker repeatedly speaks the same 

word, the temporal pitch movement will be similar, yet different, in each instance due to 

uncontrollable speaker variability. 

 
 

1.3.2 History of Chinese Tones 
 
 Chinese historical phonology is based on the Qièyùn dictionary (compiled in AD 

601), which is practically identical to Middle Chinese (Norman 1988).  Middle Chinese 

contained 8 tonal categories as shown in Figure 1-7 divided into two subcategories: yīn 

and yáng.  The distinction between the two categories in Middle Chinese was that yīn 

contained syllables with voiceless initials, whereas yáng contained syllables with voiced 

initials.  Each category had four tones: a level tone, a rising tone, a falling tone, and an 

entering (or checked) tone. 

 
 
 

 ping(level) shăng(rising) qù(falling) rù(entering) 
Yīn(voiceless) 1 3 5 7 
Yáng(voiced) 2 4 6 8 

Figure 1-7 Tonal Categories of Middle Chinese (Based on Norman 1988) 
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 Most modern Chinese dialects have merged categories over time.  Mandarin, for 

instance, has merged categories #3 and #4, #5 and #6, and has lost the rù category 

entirely (#7 and #8).  Cantonese is one of only a few dialects that preserve all categories 

from Middle Chinese (Figure 1-8).  In fact, Cantonese holds the rare distinction of being 

the only dialect in which a tonal category has split (i.e. #7 into #7a and #7b) (Norman 

1988). 

 
 
 

 ping(level) shăng(rising) qù(falling) rù(entering)
Yīn(voiceless) 1 3 5 7a 7b 
Yáng(voiced) 2 4 6 8 

Figure 1-8 Tonal Categories of Modern Cantonese (Based on Norman 1988) 

 
 
 
 It should be noted, however, that the tonal categories have been preserved but not 

the actual tonal contours.  Words in category #2, for example, were presumably 

pronounced with a level tone in Middle Chinese, but now possess a falling contour in 

modern Cantonese. 

 
Tonal 

Category
Tonal 

Contour
1 53 
2 21 
3 35 
4 24 
5 44 
6 33 
7a 55 
7b 44 
8 33 

Figure 1-9 Contours of Cantonese Tones as Spoken in Gwongzhou (from Norman 1988) 
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 Figure 1-9 shows the values used to represent contours based on Chao’s (1947) 5-

point scale in which a ‘5’ represents a high tone, a ‘1’ represents a low tone, and the other 

values fall somewhere in between.  The first digit represents the beginning position for 

the tonal contour; the second represents the ending position.   

 

1.3.3 Number of Tones 
 
 It is very unclear and debatable how many tones there are in Cantonese.  Linguists 

have argued for 6, 7, 9, 10, or even 12 tones in Cantonese.  Pedagogical texts typically 

use 6 or 7 tones.  Ching et al. (1994) has stated that there are “nine tones in Cantonese 

that are distinguishable from their pitch variation, loudness, and length”.  The correct 

number of tones there are in Cantonese, of course, depends on several variables including 

how one defines a tone. 

 One consideration is whether or not one views the high-level tone and high falling 

tone as separate or merged.  These two tones are preserved in the province of Canton, but 

are merged by most speakers in Hong Kong (Bauer and Benedict 1997).  Even in Hong 

Kong, a very strong high falling tone is maintained on the sentence final particles sin 

‘first’, tim ‘also’, and on contracted numbers such as sa’a yi ‘thirty-one’. 

 It is not surprising that many adopt this policy of merging, as the two tones are 

very similar, as well as the fact that most linguistic research is based on Cantonese as 

spoken in Hong Kong.  Merging of the high level and high falling tones is also common 

in pedagogical contexts to simplify the already complex tonal system for learners of 

Cantonese. 
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 Another consideration is whether or not the three entering (or checked) tones are 

viewed as distinct tones.  In terms of categories, they are distinct from the non-entering 

categories primarily in duration.  In terms of tonal contour, however, there is no 

difference between the three entering tones and their non-entering equivalents. 

 Because the pitch heights of the entering tones correlate with non-entering tones, 

it is no surprise that many do not consider them as tones at all.  If one considers duration 

as distinctive for a tonal category, however, or if one would like to follow traditional 

Chinese classifications, then the three entering tones are included in the Cantonese tone 

system. 

 Bauer and Benedict (1997) propose two additional tones.  These two tones result 

from a process called bin3jam1 ‘changed sound’.  The first is a high level tone with a 

Chao tone value of ‘55’ which is produced due to a process in which a high falling tone 

changes to a high level tone under certain contexts.  The second bin3jam1 tone has a 

Chao tone value of ‘25’ and is produced when a tone undergoes a phonetic or 

morphological transformation (Bauer and Benedict 1997). 

 It is well documented, however, that there are 9 citation tones in Cantonese.  In 

other words, when a native speaker of Cantonese is prompted with a Chinese character in 

isolation, only 9 tones are possible.  The high falling example listed above only occurs in 

a specific context and therefore does not qualify as a citation tone.  For the same reason, 

the bin3jam1 tones do not qualify. 

 Unlike Mandarin, Cantonese does not have a well-known numbering system to 

use as a standard to represent the various tones.  This thesis adopts the LSHK numbering 

system as developed by the Chinese University of Hong Kong (Lo et al. 1998). 
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 LSHK romanization places a number 1 through 9 following a syllable to represent 

the tone associated with the syllable.  Figure 1-10 provides a description for each of the 9 

tones as well as the Chao tone values presented earlier.  The reader should be careful not 

to confuse the tone numbers 1 through 9 with the tonal categories in Middle Chinese, as 

there is no correlation. 

 
 

Tone Description Chao Value 
1 High Level 55 
2 Middle Rising 35 
3 Middle Level 44 
4 Low Falling 21 
5 Low Rising 24 
6 Low Level 33 
7 High Level (entering) 55 
8 Mid Level (entering) 44 
9 Low Level (entering) 33 

Figure 1-10 The 9 Tones of the LSHK Romanization System 

 
 

1.3.4 Modification of Tonal Contours 
 
 There are several ways in which a canonical tone may be altered.  Tone sandhi, 

tone change, tone coarticulation, and tone declination are four terms that describe these 

changes, yet are easy to confuse when dealing with Cantonese. 

 Tone sandhi refers to a systematic change of tone because of a specific tonal 

context.  Some dialects of Chinese possess very complex system of tone sandhi.  In 

Cantonese, the only case of tone sandhi is the change of a high falling tone to a high level 

tone when preceding another high tone.  If one considers the high level and high falling 

tones as merged, however, then tone sandhi does not exist in Cantonese since the sole 

tone sandhi rule above has no application. 
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 Cantonese has a very rich system of tone change.  Tone change refers to a process 

in which a tone changes for morphological or semantic reasons.  Such change is 

lexicalized and only occurs in specific words or lexical contexts.  For example, the 

second adjective in adjective duplication becomes tone #2 such as maan6 maan6 haang4 

‘take it easy’ becoming maan6 maan2 haang4.   In kinship terms, which often consist of 

duplicated characters, it is common for the first of the duplicated syllables to become 

tone #4 as in go1 go1 ‘older brother’ becoming go4 go1. 

 Tone coarticulation is a phonological process where a tone is altered due to its 

surrounding tonal context.  A low tone following a high tone, for example, is likely to 

start with higher pitch than normal due to the speaker’s tendency to smooth the 

transitions between tones.  Tone coarticulation has a bearing on results in this thesis, 

since the data used has been affected by tone coarticulation. 

 A final type of tone change is tone declination.  Tone declination occurs over the 

course of an entire speech utterance.  When a Cantonese phrase is spoken, speakers tend 

to slightly lower the heights of the tones.  High tones, for example, are spoken at lower 

and lower pitch heights throughout a speech utterance, thus exhibiting sentential tone 

declination or down-drift (Lee et al. 2002a). 

 A sound understanding of Cantonese tones and Cantonese phonology is an 

essential precursor for doing tone recognition work.  The concepts presented above are 

central to this thesis and will be referred to frequently in future sections. 

 

 



 16

1.4 Speech Recognition 
 

The term ‘speech recognition’ refers to the design and implementation of computer 

algorithms to recognize the linguistic content of a spoken utterance.  For a detailed 

overview of speech recognition, refer to the work of Rabiner et al. (1996).  This section 

briefly discusses several speech recognition issues important to this thesis. 

 
 

1.4.1 Introduction to Speech Recognition 
 
 Speech technology has great potential in Chinese communities due to the complex 

nature of their writing system.  For instance, there is a dire need for an efficient method 

to input Chinese into a computer.  It has been noted that learning time for users of the 

Chinese keyboard systems ranges from 15 days to 104 days (Wagner et al. 1986).  

Speech recognition is a technology that can solve many problems, such as the Chinese 

input issue described above. 

 An integral part of the Chinese speech recognizer is the tone recognizer.  Many 

current Chinese recognizers do not use tone information even though it has been shown 

that inclusion of tone information can greatly enhance recognition accuracy.  Even 

though results from their tone recognizer contained mistakes, Lau et al. (2000b) reported 

that their recognition rate of 75.4% was improved to 76.6%, or a 4.9% relative reduction 

in error rate.  Subsequent research has also shown that “with perfect tone information, an 

improvement of 11.28% and 11.09% is achievable for Mandarin and Cantonese 

respectively” (Lau et al. 2000a).  A tone recognizer could benefit from knowledge gained 

from a parallel phoneme recognizer; the method utilized in this thesis, however,  does not 

contain any such phoneme recognition capabilities. 
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1.4.2 Scope 
 
 Previous research in tone recognition has fallen under four broad categories: 

monosyllabic, disyllabic, polysyllabic, and continuous.  Monosyllabic and continuous 

recognition have received the most attention.  The scopes of monosyllabic, disyllabic, 

and polysyllabic recognition include 1, 2, and many syllables respectively.  The scope of 

continuous tone recognition is much larger and much more complex as its scope covers 

entire speech utterances. 

Because there has been very little tone recognition research performed for 

Cantonese tones, monosyllabic tone recognition was chosen as the scope for this thesis as 

it is the most simple and straightforward.  Simplification of the recognition task to a 

single character is particularly appropriate since each Chinese syllable is lexical and is 

the building block of the language.  Liu et al. (1989) has reported that 23% of words in 

Chinese are monosyllables (62% are disyllables, 6% are trisyllables, and 9% are more 

than three syllables).  Because Cantonese tone recognition in current continuous speech 

recognizers have much room for improvement, it is hoped that this thesis will serve as a 

reference for future speech recognition approaches using more complex scopes, such as 

continuous speech. 

Only research in monosyllabic tone recognition is presented here.  Readers 

interested in disyllabic recognition should refer to the work of Zhang and Hirose (1998).  

For polysyllabic recognition, refer to the work of Wu and Inoue (1991).  Much research 

has been done in continuous speech, both in Mandarin (Wang et al. 1994; Chen and 

Wang 1995; Ma 1987; Zhang and Hirose 2000; Lau et al. 2000a; Gao et al. 2000), as well 
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as in Cantonese (Wong et al. 1999; Chow et al. 1998; Ng et al. 1996; Lau et al. 2000a, 

2000b; Gao et al. 2000). 

 

1.4.3 Speaker Dependency 
 
 Speech recognition systems typically come in two kinds: speaker-dependent and 

speaker-independent.  Speaker-dependent systems require users to provide speech 

samples before using.  Providing speech data before use (also called ‘training’) allows the 

recognizer to better classify speech utterances through its increased knowledge about the 

data it is trying to recognize.  Speaker-independent systems, on the other hand, do not 

require the user to initially train the system, and is therefore aimed at the ideal speaker 

rather than being patterned toward an individual speaker. 

Because the training process often requires many hours of prerecorded speech, 

speaker-independent systems are usually preferred in applications where training is not 

feasible, such as in telephone-based applications.  Speaker-dependent systems, however, 

are generally more accurate, and outperform speaker-independent systems by a factor of 

two to three (Huang and Lee 1993).  Experiments in this thesis were performed using 

both speaker-dependent and speaker-independent systems. 

 

1.4.4 Difficulties in Comparisons 
 
 The following section contains a history of relevant research to the Chinese tone 

recognition task.  The reader should keep in mind that it is very difficult to judge the 

merits of an approach solely by the net accuracy attained.  Experiments differ greatly in 

complexity, scope, corpora used, subjects, and even language.  Comparison between 
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approaches on basis of net accuracy alone will likely give a false impression as to the 

approaches’ effectiveness.  Due to the scarcity of research on Cantonese tone recognition, 

tone recognition research in other languages such as Mandarin and Thai is also provided.  

A summary of research is presented at the end of the section in Table 1-1. 

 

1.5 Tone Recognition 

1.5.1 Neural Networks 
 
 In the 1980’s neural networks received significant attention in speech recognition 

research.  Neural networks have been shown to be especially well suited for small-

vocabulary recognition tasks (Huang et al. 2001).  The term ‘multi-layer perceptron’ 

(MLP) refers to a commonly-used type of neural network.  The layers in an MLP refer to 

the layers of neurons in its design.  Neural networks consist of an input layer, an output 

layer, and optional hidden layer(s) in between.  An example of a 3-level feedforward 

neural network is shown in Figure 1-11. 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

 

Figure 1-11 3-Layer Feedforward Neural Network Classifier 

 
Classification
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Layer 
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 The number of nodes in the input layer reflects the number of input features.  

Each node in the output layer represents one of the possible classifications.  The number 

of hidden layers, as well as the number of neurons in each, is flexible and is set 

specifically for each task.  The more neurons the hidden layer possesses, the more 

accurate the system will be (up to the point of over-training), and the more training data 

is required.  An increase in the number of hidden layers is typically reserved for more 

complex classification tasks and requires much more training data. 

Although Figure 1-11 does not show it, every node in a neural network is 

connected to every node in the layer before and after it, and each path has an associated 

probability.  When a new set of features is presented to the neural network, the 

classification is determined by finding the output node with the highest degree of 

activation. 

Prior to this thesis, the only published work on monosyllabic Cantonese tone 

recognition is from Tan Lee and P.C. Ching from the Chinese University of Hong Kong 

(Lee and Ching 1997, 1999; Lee et al. 1993, 1995).  The first step in their neural network 

approach involved detecting the voiced portion of a syllable and dividing it into 16 even 

segments.  A pitch was then determined for each segment.  The input for their neural 

network consisted of 5 normalized features: initial pitch, final pitch, rate of pitch 

increase, duration (of voiced portion), and energy drop rate.  This set of features, or 

feature vector, was then entered into a neural network with one hidden layer and an 

output layer consisting of 9 nodes, one for each of the nine possible tones.  The number 

of hidden neurons used was 25 for the single-speaker system, and 35 for the multi-
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speaker system.  Recognition accuracy of 89.0% and 87.6% was achieved for single-

speaker and multi-speaker recognition respectively. 

 Neural networks have also been applied to Mandarin tone recognition by Wang et 

al. (1988, 1991).  Wang’s system used adaptive weights, a procedure where the 

probabilities between nodes can be altered during the recognition process.  Recognition 

accuracy of 92.5% was obtained for Mandarin four-tone recognition.  After successive 

training, accuracy was improved to 97.5%. 

 Another neural network approach for the Mandarin tone recognition task was 

attempted by Chang et al. (1990) using a back-propagation algorithm.  Back propagation 

refers to a process where errors in classification are reported back into the system, used to 

modify probabilities in the hidden layer, and thus reducing error rate over time.  The 

voiced portion of each speech item was divided into three non-overlapping segments.  10-

dimensional feature vectors were then formed by extracting energies, means, and slopes 

from the tonal contours, as well as the duration of the voiced portion.  The neural network 

design had 10 input neurons and 4 output neurons, one for each of the Mandarin tones.  

Various numbers of hidden layers (0-3) were attempted as well as various numbers of 

neurons per layer.  Best results were achieved with one 12-neuron hidden layer, obtaining 

93.8% accuracy. 

 
 

1.5.2 Hidden Markov Models 
 

The use of hidden Markov models (HMMs) is currently the best-performing 

speech recognition approach (Lippmann 1990; Cox 1990; Ostendorf 1996).  For this 

reason, research in HMMs far outweighs the research in any other area of speech 
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processing (Rabiner 1989).  HMMs work well for word-spotting (Rose 1996) and 

dominate the continuous speech recognition field for their acoustic modeling ability 

(Ostendorf 1996). 

 An HMM is a statistical model that uses a finite number of states and associated 

state transitions to model both temporal and spectral variations of signals (Rabiner et al. 

1996).  There are many variants of HMMs.  One of the simplest is provided in Figure 

1-12 showing a 5-state (numbered 1 through 5) left-to-right hidden Markov model. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 1-12 A 5-State Left-to-

 
 
 

Each state has one or more p

probability.  The sum of the probabi

Figure 1-12, for example, has a 0.7 

probability of moving to the next sta

represented in a transition probabilit

 1  2  3  4  5 

   0.7    0.8    0.65    0.9    1.0 

   0.3    0.2    0.35    0.1 

Transition 
Probability 

Matrix 
=

0.7   0.3   0.0   0.0   0.0
0.0   0.8   0.2   0.0   0.0
0.0   0.0   0.65 0.35 0.0
 

right Hidden Markov Model (Based on Cox 1990) 

ossible paths leaving from it with an associated 

lities must total 1.0 for each node.  The first node in 

probability of remaining in the current state and a 0.3 

te.  Probabilities of the HMM model are typically 

y matrix as shown in Figure 1-12.  The first row and 

0.0   0.0   0.0   0.9   0.1
0.0   0.0   0.0   0.0   1.0
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column of a transition probability matrix denote state #1; the second row and column 

denote state #2, and so on. 

The basis of Markovian theory, which is used in HMMs, is that the likelihood of 

being in a given state depends only on the immediately prior state, and not on earlier 

states (O’Shaughnessy 2000:85).  All that is needed to predict the future is to know the 

value of the present variable, but not past variables.  If one wanted to know how many 

employees work for Company A, for example, knowledge of how many employees were 

there yesterday will give a highly accurate idea of how many are currently there.  

Knowledge of how many employees there were a week or a year ago would not be 

considered important. 

HMMs are called ‘hidden’ because an outside observer can only observe the final 

output, not knowing the actual state sequence within the HMM.  In HMM-based tone 

recognition, each individual tone is typically modeled with its own HMM.  Classification 

is then performed by computing the probability of generating the test utterance with each 

tone model and selecting the tone associated with the highest scoring HMM (Chen et al. 

1987).  Many different algorithms exist to perform HMM traversal in the calculation of 

scoring functions. 

 Several researchers have applied hidden Markov models to tone recognition of 

Mandarin syllables.  Chen et al. (1987) have applied HMMs using Baum’s forward-

backward algorithm, in which HMM traversal occurs in both directions (i.e. from the 

beginning, moving left to right, and from the end, moving right to left).  With an HMM 

created for each tone, 98% accuracy was reported for recognition of 35 syllables.  96% 

accuracy was reported in an informal experiment of recognizing Mandarin digits. 
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 Wang and Iso-Sipilä (2002) applied left-to-right HMMs without state transition 

matrices to Mandarin tone recognition.  3 states were allocated to initial models, and six 

states for final models due to the relative lengths of the initial and final parts.  Good 

results were obtained in this approach even when the complexity of the task was reduced 

by 60%.  In their ‘Elephant’ system, speaker-independent accuracy was 87.9%.  Using 

speaker-adaptation, 89.7% accuracy was obtained using their ‘Tiger’ system. 

Lin et al. (1993) also used an HMM-based approach for Mandarin tone 

recognition.  Interestingly, they did this without using pitch information as inputted 

features.  Their speaker-dependent results were surprisingly good, at 94.85%, despite the 

small amount of data used (only 2 speakers). 

 Apichat Tungthangthum (1998) applied HMMs to the recognition of tones in 

Thai.  HMMs were trained for each of the five tones in Thai, with classification output 

being assigned to the tone associated with the highest scoring HMM.  The experiment 

was speaker-dependent with data coming solely from one speaker.  90% accuracy was 

reported. 

 

1.5.3 Vector Quantization 
 
 Vector quantization was introduced by Shannon in the late 1950’s (Shannon 

1960).  Vector quantization is a process that maps a sequence of continuous vectors into a 

digital sequence (Gray 1990).  In other words, it is a data compression principle that finds 

the set of vectors that represent an information source with minimum expected distortion 

(Burton 1985).  It is also an effective method for finding cluster centers in data (Jelinek 
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1997).  Quantization of a single signal value is referred to as scalar quantization, whereas 

vector quantization refers to quantization of multiple signal values (Huang et al. 2001). 

 When large amounts of data are being used, it is favorable to skillfully select 

representative samples from the entire population.  Each item selected as a representative 

is called a ‘codeword’, with the entire collection of codewords comprising a ‘codebook’.  

Using vector quantization eliminates the need for involving each training item in 

calculations, thus reducing time needed for classification.  For this reason, it is a common 

technique used in speech recognition tasks involving large amounts of data. 

 Guan and Chen (1993) applied vector quantization to Mandarin tone recognition.  

They represented their data with a 2-dimensional decision vector.  Results from their 

speaker-independent experiments yielded 98.76% for isolated Mandarin syllables. 

 

1.5.4 Fuzzy Sets 
 
 Fuzzy set theory was first postulated by Lotfi Zadeh (1965).  In this paper, he 

mentions that ‘imprecisely defined “classes” play an important role in human thinking, 

particularly in the domains of pattern recognition, communication of information and 

abstraction’.  The idea behind fuzzy logic is that as systems become more and more 

complex, difficulty in making precise categorizations increases. 

 Linguistics is full of imprecise information such as ‘pretty tall’ or ‘not so tall’, 

which are not very specific, yet contain enough information to express knowledge of the 

state of the matter (Hernández-Ábrego 2000).  The strength of fuzzy logic is that it can 

simultaneously handle numerical and linguistic knowledge, and is the only method able 

to do so in a unified and mathematical manner (Mendel 1995).  Once a fuzzy logic 
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system is developed, fuzzy functions are then produced for classification.  One setback in 

using this approach is that it requires careful understanding of fuzzy logic as well as 

sound knowledge of the linguistic principles involved (Mendel 1995). 

 Fuzzy sets were applied by Xu and Lee (1992) to Mandarin tone recognition.  The 

four Mandarin tones were considered as four separate fuzzy sets which describe the four 

pattern classes.  The membership functions of the four fuzzy sets were constructed 

through analysis of the tonal contours of the tones.  In a speaker-dependent experiment, 

accuracy of around 99.5% is reported. 

 

1.5.5 Decision Trees 
 
 Using decision trees is a comparatively simple approach to classify speech data.  

A decision tree is essentially a flow-chart of decisions which ultimately leads to a 

classification.  When a new speech sample is presented, the classification is decided upon 

by going through the decision tree, with branches being selected depending on the answer 

to various questions.  One advantage of using a decision tree is that it is specifically 

geared toward the current task and is easily altered to improve results.  On the other hand, 

it is not portable to other tasks. 

 Chang and Yang (1986) applied this approach to Mandarin tone recognition.  

Accuracy of 90.2% was obtained, despite using a very small training set (10 speakers 

speaking 100 digits each). 
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1.5.6 Hybrids 
 
 A hybrid approach is simply a combination of two or more of the above 

approaches.  A common hybrid approach is to use vector quantization to simplify data 

and then to use the resultant codewords or codebooks as input into the classification 

portion of the recognizer.  Each of the experiments sketched below utilizes this 

technique. 

 After using vector quantization on their data, Yang et al. (1988a, 1988b) use 

HMMs to model Mandarin tones.  They reported 98.33% accuracy in the speaker-

dependent case, and 96.53% in the speaker-independent case. 

 After vector quantization, Liu et al. (1989) matched states of their HMMs with the 

three or four turning points of a Mandarin syllable’s tonal contour.  They found that using 

multiple models for each tone gave better recognition rates.  Codebook size was reported 

to work best when set to 32.  Recognition accuracy of 97.9% was observed for isolated 

monosyllabic words (92.9% for disyllabic and 91.0% for trisyllabic). 

 Zhou and Imai (1996) utilized a different hybrid approach.  After using vector 

quantization, they used a combination of vector quantization and multi-layer perceptron 

(a type of neural network) to classify Mandarin tones.  Results were very high at 99.82%. 

Table 1-1 summarizes the research presented in this chapter.  Note the vast 

majority has used neural networks, HMMs, vector quantization, or a hybrid of these three 

methods.  It will be shown that the new approach used in this thesis is extremely 

successful in recognizing tones.  The next chapter details the methodology used in this 

thesis. 
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Method Author(s) and Year Speaker- 

Dependent 
Speaker- 

Independent 
Neural Network (Cantonese) Lee et al. 1993,1995 89.0% ---- 
Neural Network Wang et al 1988, 1991 97.5% 92.5% 
Neural Network (w/ back propagation) Chang et al. 1990 --- 93.8% 
HMM + differential coding scheme Chen et al. 1987 96.0% --- 
HMM (w/o pitch features) Lin et al. 1993 94.9% --- 
HMM (w/ 60% lower complexity) Wang and Iso-Sipilä 2002 89.7% 87.9% 
HMM (Thai) Tungthangthum 1998 90.0% --- 
Vector Quantization (VQ) Guan and Chen 1993 --- 98.8% 
Fuzzy Sets Xu and Lee 1992 99.5% --- 
Decision Tree Chang and Yang 1986 --- 90.2% 
VQ/HMM Yang et al. 1988a, 1988b 98.3% 96.5% 
VQ/HMM Liu et al. 1989 --- 97.9% 
VQ/MLP Zhou and Imai 1996 99.8% --- 

Table 1-1 Summary of Monosyllabic Tone Recognition Research (Cantonese in bold) 
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2 Methodology 
 

This chapter contains a step-by-step description of the methodology used in this 

thesis.  The process begins with files containing speech utterances.  Each file is processed 

with the last step being the assignment of tone.   

Figure 2-1 provides a general overview of the tone recognition process. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 2-1 Overview of Tone Recognition Process 
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2.1 Corpus Selection 
 

In this work, I used the Chinese University Syllable Corpus (CUSYL version 1.0).  

It was the natural choice as it is the only publicly available spoken-language corpus of 

Cantonese syllables.  It is, however, well suited for the Cantonese tone recognition task.  

CUSYL, a subset of the larger CUCorpora, is a corpus of single syllables produced and 

distributed by the Speech Processing Group of the Digital Signal Processing Laboratory 

at the Chinese University of Hong Kong.  The corpus was specifically designed to cover 

the entire set of valid Cantonese syllables, including alternative and colloquial 

pronunciations (Lee et al. 2002). 

The database contains speech from 2 male (cs02m, cs04m) and 2 female (cs01f, 

cs03f) speakers, each speaking the entire set of about 1,800 Cantonese syllables.  Table 

2-1 displays the syllabic inventory of the corpus.  Table 2-2 and Table 2-3 provide the 

tonal distribution.  All data is manually verified using the LSHK phonemic transcription 

format also developed at the Chinese University of Hong Kong. 

 

Total Number of Syllables 1801
Number of Distinct Tonal Syllables 1388
Number of Distinct Base Syllables 637 

Table 2-1 Syllabic Inventory of CUSYL (Lee et al. 2002) 

 
 
 

Tone 1 2 3 4 5 6 
Count 423 319 351 247 136 325 

Table 2-2 6-Tone Distribution in CUSYL (Simplified form of Table 2-3) 
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Tone 1 2 3 4 5 6 7 8 9 
Count 328 319 253 247 136 217 95 98 108 

Table 2-3 9-Tone Distribution in CUSYL (Lee et al. 2002) 

 

After being prompted in Chinese characters, the speakers spoke into a head-

mounted microphone.  Due to undesirable syllable lengthening in monosyllabic speech, 

the prompts also included “carrier words”, which were then deleted from the data (Lo et 

al. 1998).  Although the files themselves contain only one syllable, they should not be 

considered isolated syllables per se, since coarticulation effects are present on both ends 

of the tonal contour. 

Subjects were recorded using a Shure SM10A dynamic cardioid head-mounted 

microphone.  The data was passed through a mixer to the DAT recorder for real-time A/D 

conversion at 48kHz.  The data was then reduced to 16kHz with a DATLink DSP 

firmware and sent through a SCSI interface to the computer’s hard disk (Lo et al. 1998).  

A summary of recording environs is shown in Table 2-4. 

 
 

Microphone Shure SM10A Dynamic cardiod type 
Mixer Mackie 1202 VLZ 
A/D Conversion Sony PCM 2700A at 48kHz 
Downsampling DAT Link default downsampling setup 

Table 2-4 Summary of Recording Environment 

 
 

2.2 Feature Manipulation 

2.2.1 Feature Extraction 
 
 The first step in processing a file is to extract the desired features from the speech 

sample.  There were two main feature extraction methods used in this thesis to extract 
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fundamental frequencies (F0).  Both algorithms were implemented using tools included in 

the “Speech Filing System” (SFS), a freely available suite of speech processing tools 

available from the University College London (ftp://ftp.phon.ucl.ac.uk/pub/sfs).  The first is an 

autocorrelation algorithm; the second is a cepstrum algorithm.   

 Relevant documentation (Huckvale 2000) describes the autocorrelation method 

(fxac) as a three-step process: (i) cubing waveform sample values, (ii) autocorrelation, 

and (iii) voicing & fundamental frequency decision.  Output values are estimated in 25ms 

windows with a repetition time of 5ms (Huckvale 2000).  Examination of the code 

suggests that the search range is restricted to 80-400 Hz (de Cheveigné 2001). 

 According to Huckvale’s documentation (2000), the cepstrum algorithm (fxcep) 

first decomposes the waveform using a 512-point Fast Fourier Transform (FFT) on 40 

millisecond windows of input speech, and then calculates the log spectrum.  An FFT of 

this result then provides the cepstrum.  Noll rules (Noll 1967) are then implemented to 

find out if the input is voiced, and if so, a fundamental frequency value is determined 

(Huckvale 2000).  Examination of the code suggests that the search range for this 

calculation is limited to 67-500 Hz (de Cheveigné 2001). 

 

2.2.2 Zero-Removal 
 
 Results from both the autocorrelation and cepstrum methods consist of a series of 

data elements.  Each element is either a positive, whole number indicating the F0, or a 

zero-value denoting an absence of F0.  Because F0-values are only obtained from voiced 

portions of speech, and only voiced speech carry tone information, it was decided that 

zero-features (i.e. features with a value of ‘0’) would be removed.  Pre-syllable, post-

ftp://ftp.phon.ucl.ac.uk/pub/sfs
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syllable, and even mid-syllable zero-values, if any, are removed in this process.  It is 

assumed that a mid-syllable zero-value does not contain pertinent tone information and is 

thus disregarded as an error in the feature extraction process.  A slight gap due to the loss 

of a feature is more desirable than inclusion of an erroneous zero-value, which would 

adversely affect future calculations.  An example of a feature vector both before and after 

the Zero-Removal step is provided in Table 2-5.  Notice that the 3 leading zeroes have 

been truncated. 

 
 
 

Before Zero-Removal 0 0 0 104 104 205 205 205 200 195 192 188 183 181 179 177 175 175 173 170 168 163 163 163 

After Zero-Removal 104 104 205 205 205 200 195 192 188 183 181 179 177 175 175 173 170 168 163 163 163 

Table 2-5 Data before and after Zero-Removal step for a Cantonese syllable 

 
 

2.2.3 Feature Selection Algorithm 
 
 In order for the methods proposed in this paper to work, each input must contain 

an equal number of features.  It is still uncertain what value is the ideal number of 

features to use for tone recognition.  Prior methods have tried such values as 10, 16, or 

even 80 (Zhang et al. 2000, Lee et al. 1993, Chen et al. 1987).  A set of 16 features was 

selected as the best option for this thesis to facilitate comparison with Lee et al. (1993) as 

well as provide a benchmark value.  This thesis also performs experiments using 8 

features in an attempt to find a less computationally expensive value. 

 In cases where the input does not contain the required number of features (only 

occurs in 16-feature experiments), zeroes are added to the beginning of the feature vector 

to meet the vector length requirement (Table 2-6 and Table 2-7).  In both tables, N refers 

to the required number of features (e.g. N = 16 in Table 2-6), whereas e refers to the total 
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number of features in the input (e.g. e = 5 in Table 2-6).  In most cases, however, the 

input possesses more than the minimal requirement of features.  In such cases, the first 

and last features are selected.  Remaining features are selected such that they are 

maximally equidistant from each other.  The equations used for this process are shown in 

Equation 2-1. 

 
 
 

Before Feature Selection 246 246 246 246 242 

After Feature Selection 0 0 0 0 0 0 0 0 0 0 0 246 246 246 246 242 

Table 2-6 Data before and after Feature Selection step when e < N 

 
 
 
Before Feature Selection 104 104 205 205 205 200 195 192 188 183 181 179 177 175 175 173 170 168 163 163 163 

After Feature Selection 104 104 205 205 200 192 188 183 179 177 175 173 170 163 163 163 

Table 2-7 Data before and after Feature Selection step when e ≥ N 
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Equation 2-1 Feature Selection Algorithm for e < N (left) and e ≥ N (right) 

 
 
 

2.2.4 Feature Extraction Variations 
 
 Although the insertion of zeroes in the procedure mentioned above helps meet 

requirements for the number of features, it does not retain tonal contours very well.  As 

will be shown later, these zero-values greatly increase absolute values of scalar distances 

between two features being compared.  In an attempt to minimize this effect, two 
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variations to the above feature extraction algorithm were explored in this work.  The first 

is called “Feature Stretching”; the second is “100-Addition”. 

 In the “Feature Stretching” method, features are “stretched” out to meet the 

number of features requirement.  The resulting contour can be reasonably retained, 

especially in level tones as Table 2-8 illustrates.  Note each of the 5 features are 

“stretched” out to meet the vector length requirement of 16 features.  Tones with extreme 

contours, on the other hand, are lengthened, thus making strong pitch changes appear 

much gentler. 

 

 
Before Feature Selection 246 246 246 246 242 

After Feature Selection 246 246 246 246 246 246 246 246 246 246 246 246 246 246 242 242 

Table 2-8 Data before and after Feature Stretching Algorithm 

 
 

The algorithm is shown in Equation 2-2, is identical to the feature selection 

method outlined above in the case where e ≥ N.  The sole difference lies in that the 

Feature Stretching algorithm is used for the calculation of every feature. 
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Equation 2-2 Feature Stretching Algorithm 

 

 

 It was observed that the zeroes added during the “Zero-Addition” process 

introduced a severe penalty for feature vectors without enough features.  In the “100-
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Addition” method, values of ‘100’ are added, instead of zero-values, in each case where 

there is an insufficient number of features (Table 2-9).  Using “Feature Stretching”, the 

new feature takes on the value of the nearest feature; using “Zero-Addition”, a zero is 

added. 

 
 
 

Before Feature Selection 246 246 246 246 242 

After Feature Selection 100 100 100 100 100 100 100 100 100 100 100 246 246 246 246 242 

Table 2-9 Data before and after 100-Addition Algorithm 

 
 

The value of ‘100’ was arbitrarily chosen because it is a value roughly in the 

middle of the two.  The hypothesis is that inserting a value of 100 would help smooth the 

contours and lessen the dramatic effect of zero-addition.  The algorithm employed is 

shown in Equation 2-3, and is identical to the zero-addition algorithm except for the 

addition of 100 instead of 0. 
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Equation 2-3 100-Addition Algorithm 

 
 

2.2.5 Normalization 
 
 For speaker-independent experiments, normalizing feature vectors can have a 

very strong effect on recognition accuracy.  Because each speaker speaks in a different 

frequency range with different distribution, normalization of feature vectors enhances the 

ability to compare data across speakers.  Table 2-10 displays the mean (average value of 
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all frequency values) and standard deviation that was calculated for each of the four 

speakers in the CUSYL corpus.  As expected, the mean frequencies from the two female 

speakers (cs01f, cs03f) are noticeably higher than the male speakers’.  Note also that the 

standard deviation for speaker cs03f is significantly higher than the others.  This will be 

discussed in future sections. 

 
 
 

 Mean (µ) Standard Deviation (σ) 
cs01f 201.3 38.8 
cs02m 155.6 32.0 
cs03f 220.9 49.3 
cs04m 150.1 28.3 

Table 2-10 Mean and Standard Deviations of Speakers in the CUSYL corpus 

 
 
 
 This thesis adopts the standard method of normalization by altering each feature 

by subtracting the mean (µ) and then dividing by the standard deviation (σ) as shown in 

Equation 2-4.   

 
 

σ
µ−
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Equation 2-4 Normalization Formula 

 
 
 
 The standard method of computing the mean is also used.  Equation 2-5 shows the 

formula used to calculate the mean as well as the standard deviation formula used during 

normalization. 
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Equation 2-5 Formulas to Calculate the Mean (left) and Standard Deviation (right) 

 
 

 This formula employs a less commonly used method of calculating standard 

deviation such that the denominator is N, rather than the usual N-1.  Choosing a 

denominator of N is typical when measuring distribution whose mean is known a priori 

(Press 1992:611). 

 An example of this transformation can be seen in Table 2-11.  Features no longer 

represent actual frequency values, but rather a relative value.  A value of 0 would 

represent a frequency value equal to the speaker’s mean frequency.  A positive value 

indicates how many standard deviations the feature is above the mean; a negative value 

(none shown in Table 2-11) signifies how many below. 

 
 
 

Before Normalization 271 266 266 262 258 262 262 258 

After Normalization 1.7955 1.6667 1.6667 1.5636 1.4604 1.5636 1.5636 1.4604 

Table 2-11 Data before and after feature normalization 

 
 
 
 The normalization process described above is essential in speaker-independent 

experiments, as normalization allows data from different speakers to be directly 

comparable.  As will be shown later, normalizing of data has a profound effect on 

recognition accuracy. 
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2.2.6 Feature Trimming 
 

Fundamental frequencies can only be extracted on voiced portions of speech.  

Because syllable initials are unvoiced in Cantonese, they carry no tone information.  

Subsequently, the tone recognition task for Cantonese is limited to data from the rime 

portion of the syllable: the vowel and the optional nasal coda.  Data from the peripheries, 

especially from nasal codas, tend to be less predictable.  It is unclear, however, which 

features from voiced regions are detrimental to recognition.  Hengjie Ma (1987) mentions 

that he “cut small parts of the pitch contour near its endpoints in order to avoid the 

unfavorable influence”.  Liu and Wang (1988) arbitrarily select the first and last 1/8 

portion to discard.  It is also common to consider tonal information from the vowel only, 

discarding information from nasal codas.  Chen (2001) goes further to suggest that data 

from only the main vowel (not including glides) should be used. 

The feature extraction methods described above are blind to phoneme 

information.  In other words, fundamental frequencies are collected from any voiced 

speech data, whether it is vowel, nasal, or other.  Limiting the task to consider only vowel 

data is impossible without integrating a phoneme recognizer.  In an effort to increase 

accuracy, however, experiments were run in which features at the beginning and/or end 

of feature sets were ignored. 

For this thesis, attempts were made to ignore the first and last feature (i.e. #1 and 

#8) as well as the first and last pair of features (i.e. #1-2 and #7-8) in 8-feature speaker-

dependent experiments.  In the 16-feature experiments, ignoring even more features was 

attempted.  In addition to trying to ignore the outside 1 or 2 features mentioned above, 
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experiments were performed in which outside 3 and 4 features were not considered.  

Attempts to ignore only the first feature, or two, or three were also tried (Table 2-12). 

 
 

 
 # of Features Ignored Features 

8 Features 1-8 1-2,7-8 --- --- --- --- Speaker-
Dependent 16 Features 1-16 1-2,15-16 1-3,14-16 1 1-2 1-3 

8 Features --- --- --- --- --- --- Speaker-
Independent 16 Features --- --- --- 1 1-2 1-3 

Table 2-12 Selection of Features to Ignore 

 
 
 
 Feature trimming is an important part of the procedure presented in this thesis, as 

it essentially decides which features in a feature vector carry the most crucial information 

for the recognition task.  It will later be shown that trimming features has a noticeable 

effect on recognition accuracy.  Once the features have been extracted and manipulated, 

they are entered into the tone recognizer.  The underlying theory behind the tone 

recognizer used in this thesis is ‘memory-based learning’. 

 

2.3 Memory-Based Learning (MBL) 
 
 Memory-based learning is a machine-learning approach referred to as example-

based, exemplar-based, instance-based, similarity-based, nearest-neighbor, or lazy 

learning.  Memory-based learning is composed of a learning component and a similarity-

based performance component (Daelemans et al. 1998a). 

 The learning component takes feature vectors extracted from files and stores them 

into memory.  No abstraction or structuring is performed, nor are any explicit rules or 



 41

generalizations applied.  Each case stored in memory consists of a feature vector with an 

associated classification label. 

 During the performance component, a previously unseen feature vector is 

presented and similarity is calculated between the new test case and each example stored 

in memory.  New instances are then assigned the classification of the closest item(s) 

stored in memory.  In cases of ambiguity, when several classifications are assigned to 

identical input, the most probable solution, or a probabilistic random choice, is made 

(Daelemans 1998). 

 Van den Bosch (1999a) notes that memory-based learning has attained adequate 

to excellent generalization accuracies on complex tasks as different as hyphenation, 

semantic parsing, part-of-speech tagging, morphological segmentation, and word 

pronunciation (Daelemans and van den Bosch, 1992; Cardie, 1994,1996; Daelemans et 

al., 1996; van den Bosch, 1997).  A similar type of analogical reasoning has been applied 

in other areas as well (see Skousen 1989, 1992; Skousen et al. 2002). 

 Veenstra (1998) observes that the assumption underlying memory-based learning 

is that the use of stored experience outperforms the application of knowledge (such as 

rules or decision trees) abstracted from experience.  Stochastic, rule-based approaches 

abstract rules from earlier experiences to apply to future test cases.  It has been shown, 

however, that pure memory-based learning algorithms obtain better results in 

experiments such as grapheme-phoneme conversion and word pronunciation (van den 

Bosch 1999a, Veenstra et al. 1998). 

 The primary difference between lazy learning and the rule-based, or ‘eager’ 

learning, is that eager learning methods prune information during their abstraction 
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processes.  Eager approaches ignore exceptional, low-frequency items with the 

supposition that elimination of these items will aid overall accuracy.  The strength of the 

lazy learning approach is that irregular, yet useful, information is not discarded.  It is 

essentially task-independent, language-independent, and independent of expert 

knowledge, assuming the task can be described as a classification problem (Daelemans et 

al. 1998a). Furthermore, because rules are not abstracted, there is no need for rule 

ordering as needed by rule-based approaches (Daelemans 1998).  Daelemans et al. (1999) 

explain in detail why forgetting exceptions can be harmful. 

 Memory-based learning, as detailed above, is one of the foundations of the new 

approach presented in this work.  This thesis utilizes memory-based learning to 

categorize and classify Cantonese tone data.  

 
 

2.4  TiMBL 
 
 The memory-based learning techniques presented in this thesis were implemented 

using TiMBL.  TiMBL is a software package developed by the ILK group at Tilburg 

University and can be freely downloaded for research purposes from 

http://ilk.kub.nl/timbl_download.html.  Although TiMBL was designed with linguistic 

tasks in mind, it can be applied to any classification tasks with symbolic or numeric 

features for which training data is available (Daelemans et al. 2001). 

 TiMBL, as a tool to implement memory-based learning, has been applied to many 

NLP tasks.  Selected examples from TiMBL documentation (Daelemans et al. 2001) in 

the morpho-phonological areas are: classifying phonemes in speech (Kocsor et al. 2000); 

assignment of word stress (Daelemans et al. 1994); grapheme-to-phoneme conversion 

http://ilk.kub.nl/timbl_download.html
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(van den Bosch and Daelemans 1993); predicting linking morphemes in Dutch 

compounds (Krott et al. 2001); diminutive formation (Daelemans et al. 2001); and 

morphological analysis (van den Bosch and Daelemans 1999). 

 Syntactico-semantic tasks at the sentence level include part-of-speech tagging 

(Zavrel and Daelemans 1999, van Halteren et al. 2001); PP-attachment (Zavrel et al. 

1997); word sense disambiguation (Veenstra et al. 2000); subcategorization (Buchholz 

1998b); phrase chunking (Tjong Kim Sang and Veenstra 1999); article generation 

(Minnen et al. 2000); shallow parsing (Buchholz et al. 1999); clause identification 

(Orasan 2000, Tjong Kim Sang 2001); and sentence-boundary detection (Stevenson and 

Gaizauskas 2000). 

On the textual level, TiMBL has been used for information extraction (Zavrel et 

al. 2000) and spam filtering (Androutsopoulos et al. 2000).  In the field of discourse and 

dialogue modeling, TiMBL has been used for shallow semantic analysis of speech-

recognized utterances (Gustafson et al. 1999) and in error detection in spoken dialogue 

systems (Krahmer et al. 2001, van den Bosch et al. 2001). 

 TiMBL documentation goes further to say that while most work has been oriented 

towards language engineering applications, linguistic and psycholinguistic relevance of 

memory-based learning has been another focus.  Work includes stress assignment in 

Dutch (Daelemans et al. 1994, Gillis et al. 2000); reading aloud (van den Bosch and 

Daelemans 2000); phonological bootstrapping (Durieux and Gillis 2000); and 

comparison to other analogical methods for linguistics (Daelemans et al. 1997). 

 In speaker-dependent experiments it is typical to divide a speaker’s speech data 

into two groups: training data and test data.  In this work, 200 of each speaker’s 1800 
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total speech files were reserved for testing, with the other 1600 serving as training 

samples.  Test cases were chosen by selecting every 9th file.  Word accuracy was then 

computed by dividing the number of correct classifications by the total number of test 

cases (i.e. 200). 

 In speaker-independent experiments, data from 3 speakers were used for training 

with the remaining speaker (all 1800 files) being used to test.    All permutations were 

performed using each speaker alone as the test case.  Results were then computed by 

taking the average of the results from each of the four speakers.  Because the test set for 

speaker-independent experiments was much larger (i.e. 1800 as compared to just 200) 

computational cost was increased; and due to hardware restrictions, less experiments 

could be performed in some cases. 

 

2.5 Similarity Metrics 
 
 The similarity metrics used in this thesis define how to compute the likeness 

between two sequences of numbers (i.e. features).  The three metrics offered by TiMBL 

are: Overlap, Modified Value Difference, and Numeric. 

 The Overlap metric for similarity is based on the number of features in two cases 

that match exactly.  In other words, a feature with a value of ‘230’ is as different from a 

value of ‘0’ as it is different from a value of ‘229’.  The formula for the Overlap metric 

can be found in Equation 2-6, where ∆(X,Y) is the distance between X and Y, represented 

by n features, wi is a weight for feature i, and δ is the distance per feature (Daelemans 

1999).  Note that each of the metric formulas in this section, as well as the formulas 
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presented in Chapter 2.6 and 2.8 are taken directly from TiMBL documentation 

(Daelemans et al. 2001). 
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Equation 2-6 Overlap Metric Formula 

 
 
 
 The Overlap metric is restricted in application; it limits itself solely to exact 

matches between feature vectors.  In contrast, the Modified Value Difference Metric 

(MVDM) was defined by Stanfill and Waltz (1986), and later added upon by Cost and 

Salzberg (1993).  This new method does not see each value as equally dissimilar but 

rather classifies groups of features as more or less similar. 

A certain application, for example, could consider the phonemes /m/ and /n/ to be 

more similar than /m/ is to /a/.  The phonemes /m/ and /n/ are considered more similar 

because the phonemes have many articulatory features in common, such as ‘consonant’ 

or ‘nasal’.  The phonemes /m/ and /a/, on the other hand, share very few features.  

Equation 2-7 shows the formula used to compute distances between two values V1, V2 of 

a feature using the Modified Value Difference Metric, where Ci is the class, and P is the 

conditional distribution (Daelemans et al. 2001). 
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Equation 2-7 Modified Value Difference Metric Formula 
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 TiMBL offers another metric specifically designed for numeric features.  This 

third metric does not take into account the number of exact matches as the Overlap metric 

does, nor does it classify certain groups of features as more similar than others as the 

MVDM approach does.  Distance is simply derived as the sum of feature distances, each 

in turn being the absolute value of the difference between feature values.  The distance 

between vector A and vector B in Table 2-13 is 40 (5+5+5+5+5+5+5+5).  The distance 

between vector A and C is 280 (70+60+50+40+30+20+10+0).  In this case, vector A is 

much closer to vector B than it is to vector C.  The Numeric metric is shown in Equation 

2-8 (Daelemans et al. 2001). 

 
 
 

Feature Vector Features 
A 200 200 200 200 200 200 200 200 
B 195 195 195 195 195 195 195 195 
C 130 140 150 160 170 180 190 200 

Table 2-13 Feature Vector Values for Sample Calculation 
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Equation 2-8 Numeric Metric Formula 

 
 

 Because the features used in this thesis are numerical fundamental frequencies, 

the numeric metric was chosen.  Test experiments in this thesis show that the numeric 

metric was most appropriate for this task.  Results using the Overlap metric were 
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considerably lower and MVDM was comparable to, but never outperformed the numeric 

metric. 

 Three similarity metrics have just been discussed: the Overlap metric, MVDM, 

and the Numeric metric.  The Numeric metric is the best similarity metric for tone 

recognition and serves as a fundamental component of the new approach described in this 

thesis. 

 

2.6 Feature Weighting 
 
 Without feature weighting, all features in the feature vector are assumed to be 

equally important in the classification task.  However, particular features carry more 

pertinent information than others.  For this reason, more informative features can be 

weighted more heavily than others to obtain better net accuracy.  TiMBL provides five 

different feature-weighting methods to choose from: none, Information Gain, Gain Ratio, 

Chi-squared, and Shared Variance.  In order to determine which feature-weighting 

method produced best results, experiments are performed using each of the five methods.  

Results using each of these methods will be shown in Chapter 3.4.  For an overview of 

other feature weighting methods not described in this paper, refer to Wettschereck et al. 

(1996) and Aha (1998). 

 TiMBL documentation notes that for each of the feature weighting methods 

described below, numeric features are discretized into a number (default = 20) of equally-

spaced intervals between the minimum and maximum values of the feature (Daelemans et 

al. 2001). 
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 The first, and simplest, way to weight features is to weight all features equally.  

The net result is a simplification of Equation 2-9 (left equation) to a mere sum of feature 

distances, as shown in Equation 2-9 (right equation). 
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Equation 2-9 Distance Formula with Feature Weighting (left) and without (right) 

 
 
 
 A second type of feature weighting is Information Gain.  Information Gain has 

been shown to be a popular feature weighting method, especially when used in 

conjunction with the IB1 algorithm (Daelemans et al. 1998a, 1998b, Daelemans 1999, 

Buchholz 1998a, Busser et al. 1999).  Information Gain considers each individual feature 

and quantifies its relevance toward proper classification of the item.  The weight of a 

given feature, wi, is computed by calculating the difference in entropy, or uncertainty, 

between situations with and without knowledge of the feature (Equation 2-10).   
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Equation 2-10 Information Gain 

 
 
 

A variation to the Information Gain method is the Gain Ratio algorithm.  

Information Gain tends to overestimate the relevance of features with large numbers of 

values.  Features that possess many values have a very high Information Gain, but add no 

generalization to new instances (Daelemans et al. 2001).  In an effort to normalize data, 
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Quinlan (Quinlan 1993) has introduced the Gain Ratio formula as shown in Equation 

2-11.  The difference between the two methods is that the Gain Ratio formula is divided 

by a normalizing factor.  The denominator is the entropy of the system, or ‘split info’.  

The split info, or si(i), helps to avoid a bias in favor of features with more values (van den 

Bosch 2000).   
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Equation 2-11 Gain Ratio Formula 

 
 
 

One of the disadvantages of applying the above methods is that the relevance of 

redundant features is often overestimated.  A duplicated feature, for instance, results in an 

overestimation of the feature’s weight by a factor of 2.  This can dominate the similarity 

metric and thus lead to accuracy loss (Daelemans et al. 2001). 

White and Liu (1994) have shown that Gain Ratio, despite the normalizing, still 

has an unwanted bias towards features with more values.  Their reasoning is that the Gain 

Ratio statistic is not corrected for the number of degrees of freedom relating classes and 

values (Daelemans et al. 2001).  White and Liu (1994) presented the Chi-squared 

statistic, which can be compared across conditions with different numbers of degrees of 

freedom.  The Chi-squared formula (χ2), is shown in Equation 2-12, where Oij is the 
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observed number of cases, and Eij is the expected number of cases which should be in cell 

(vi,cj) in the contingency table (Daelemans et al. 2001). 
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Equation 2-12 Chi-squared (χ2) 

 
 
 
 The last of the feature weighting algorithms that will be discussed is the Shared 

Variance measure.  Instead of using the χ2 feature weighting, correction for the degrees of 

freedom can be done using Equation 2-13, where the denominator denotes the degrees of 

freedom. C is the number of classes and V is the number of values (Daelemans et al. 

2001). 
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Equation 2-13 Shared Variance 

 
 
 
 In this thesis, all five methods mentioned above are implemented.  It will be 

shown later that recognition results depend significantly on which feature weighting 

method is utilized: Information Gain, Gain Ratio, Chi-squared, Shared Variance, or none 

at all.   
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2.7  k-values 
 

IB1 is a nearest-neighbor (NN) approach, or a k-NN classifier.  Once a similarity 

calculation is performed for each training instance, a ranking can be established of the 

closest match down to the lowest match.  Instead of simply taking the classification of the 

single neighbor providing the highest match (i.e. k = 1), the most common classification 

of some number of highest scoring instances can be used, where k represents that number.  

Suppose some situation where the k-value is 7 and the top three scores yield a 

classification of tone #5, but the next four are classified as tone #2.  The net result would 

be a classification of tone #2 because the most common classification within the top 7 

nearest neighbors is used as the final result. 

Increasing the number of nearest neighbors increases generalization of the system, 

but decreases efficiency (van den Bosch 1999b).  Due to this computational inefficiency, 

some have tried methods to remove unnecessary instances from memory (Hart 1968, 

Gates 1972, Wilson 1972, Devijer and Kittler 1980), although that may be harmful 

(Daelemans et al. 1999).    In this thesis, it was decided to use odd-numbered k-values 

from 1 to 15, with no removal of instances from memory.  Only odd-numbered values 

were chosen in an attempt to limit the number of ties. 

 Without using k-values, classification must be assigned the tone associated with 

the highest scoring feature vector.  It will be shown that using various values of k has a 

profound effect on recognition accuracy. 
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2.8 Class Voting Weights 
 
 If the k–values are very small (thus only a few nearest-neighbors), the final 

judgment can be unreliable and misleading.  Larger values of k tend to offer higher 

accuracy, but if too high, mediocre matches will add unnecessary votes that may decrease 

overall accuracy.  As a result, it is very important to find task-specific k-values that 

perform best.  This thesis implements 4 different weighting functions for weighting the k-

nearest neighbors: Normal, Inverse Linear, Inverse Distance, and Exponential Decay 

(Figure 2-2). 
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Figure 2-2 Class Voting Weight Functions: Normal (top left), Inverse Linear (top right), Inverse 

Distance (bottom left), and Exponential Decay (bottom right) 
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 The most straightforward approach (i.e. ‘Normal’) is to equally weight all k-

nearest neighbors.  The end result is simply the classification with the highest number of 

votes.  Although this approach is effortless and the least computationally demanding of 

the approaches, it does not perform as well as methods that weight the nearest neighbors’ 

votes most heavily. 

 A second method is called Inverse Linear.  The idea of weighting votes according 

to distance from the query was first proposed by Dudani (1976).  Dudani’s first proposal 

is a method where the nearest neighbor receives a weight of 1, the furthest a weight of 0, 

and the others receive a weight scaled linearly in between.   This method of weighting is 

called Inverse Linear and is shown in Equation 2-14, where dj is the distance to query, d1 

is the nearest neighbor, and dk is the furthest neighbor. 
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Equation 2-14 Inverse Linear Function 

 
 
 
 Another proposal by Dudani is the Inverse Distance function (Dudani 1976).  The 

Inverse Distance equation is shown in Equation 2-15 where dj is the distance to the query.  

Also, note that a small constant is usually added to the denominator to help avoid division 

by zero (Wettschereck, 1994). 
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Equation 2-15 Inverse Distance Function 

 
 
 
 The last function considered here is the Exponential Decay approach proposed by 

Shepard (1987).  He argues that the relevance of a nearest-neighbor is an exponentially 

decreasing function of its distance from the query item.  Equation 2-16 gives the 

Exponential Decay function, where α and β are constants determining slope and power of 

the function.  Both α and β have been set to 1 for the experiments in this study. 

 
 
 

βα jd
j ew −=  

 
Equation 2-16 Exponential Decay Function 

 
 
 
 
 The four functions presented here attempt to determine which nearest-neighbor(s) 

should carry the most weight in the classification calculation.  Experiments are performed 

in this thesis using all four methods to determine which function results in highest 

classification accuracy. 
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2.9 Classification Algorithm 
 

The role of classification in this thesis is to decide which Cantonese tone best fits 

the data.  The choice of a particular classification algorithm can have a profound effect 

upon results.  The TiMBL software used in this thesis offers four separate classification 

algorithms to choose from: IB1, IGTREE, TRIBL, and IB2.  Although similar, these 

algorithms vary in: 1) their definition of similarity, 2) the way the instances are stored in 

memory, and 3) the way the search through memory is conducted (Daelemans et al. 

2001).  A brief explanation of each is provided in Table 2-14. 

 
 
 

ALGORITHM DESCRIPTION 
IB1 k-NN algorithm (default) 
IGTREE decision-tree-based optimization 
TRIBL hybrid of IB1 and IGTREE 
IB2 incrementally edited machine-based learning 

Table 2-14 Summary of TiMBL Algorithms 

 
 
 
 The default algorithm, IB1, was chosen for this work.  The IB1 algorithm’s 

primary distinction is that it provides maximal accuracy, yet at the expense of increased 

computational cost (Daelemans et al. 2001).  If memory or computational power were an 

issue, one of the others could have been used.  The result would be a faster, memory-

friendly version but with a loss in accuracy.  Test cases for this task confirmed that IB1 

outperforms the other algorithms, albeit by a small margin. 

 We have just taken a look at the methodology used in this thesis.  The next 

chapter will now present the results from using this process. 
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3 Results 
 

This chapter will now present the results obtained using the methodology described 

in Chapter 2.  This thesis presents results based on 4 main tone recognition systems 

developed through the course of this work: 6-tone/8-feature, 9-tone/8-feature, 6-tone/16-

feature, and 9-tone/16-feature.  Within each system, nearly every possible combination of 

algorithm, feature extraction, feature weighting, feature trimming, k-value, and class 

voting weights was tried in an attempt to find the best combination for each system. 

 With the exception of the normalization and algorithm results, results of 

individual speakers are not given.  The results presented consist of the average of all 4 

speakers’ results.  Because tens of thousands of experiments were performed, only the 

best score achieved is presented for each case.  In many experiments, however, the 

average of all results is also provided to help draw conclusions. 

  

3.1 Feature Extraction 
 
 One way to vary accuracy is to use different methods of feature extraction.  

Experiments were performed using both Auto Correlation and Cepstrum feature 

extraction methods.  When calculating cepstrum features, a threshold (-t) can be set to 

help determine the voiced portion of data.  Experiments were performed using –t values 

of 150 and 75, represented in tables below as CepA and CepB respectively.  The value of 

75 is the suggested default in relevant documentation; the value of 150 was chosen 

because it captured more data by raising the threshold in detecting voiced portions in 

speech.  In 16-feature experiments, CepA and CepB were further split into CepA/B(s), 
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CepA/B(0) and CepA/B(100) to indicate feature stretching, zero-addition, and 100-

addition respectively (see Chapter 2.2.4). 

 

3.1.1 Speaker-Dependent Results 
 
 It appears that the Auto Correlation method (AC) is the one best suited for 8-

feature experiments.  Table 3-1 shows that Auto Correlation produced the best results as 

well as the best average in 6-tone/8-feature experiments.  Although CepB does have a 

higher “best result” in 9-tone/8-feature experiments, the average accuracy for Auto 

Correlation was noticeably higher, indicating that it is generally better. 

 
 
 

 6-Tone 9-Tone 
 Best Average Best Average 
AC 90.5 86.8 80.6 75.6 
CepA 88.6 83.2 78.0 69.5 
CepB 89.8 85.9 80.9 74.5 

Table 3-1 Feature Extraction Results (Speaker-Dependent; 8-feature) 

 
 
 
 It is less clear which method works best in 16-feature experiments.  In 6-tone/16-

feature experiments, CepstrumB using either zero-addition (CepB(0)) or 100-addition 

(CepB(100)) attained best results (Table 3-2). 
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 6-Tone 9-Tone 
 Best Average Best Average 
AC 90.4 87.8 82.5 77.7 
CepA(s) 89.5 86.4 77.6 72.9 
CepA(0) 89.5 86.1 86.6 82.0 
CepA(100) 90.1 86.6 87.0 82.2 
CepB(s) 89.5 87.0 81.3 76.4 
CepB(0) 90.9 87.3 86.6 81.9 
CepB(100) 90.5 87.6 86.5 81.7 

Table 3-2 Feature Extraction Results (Speaker-Dependent; 16-feature) 

 
 
 
 In 9-tone/16-feature experiments, best results were achieved using the zero-

addition and 100-addition methods of CepstrumA and CepstrumB.  It does appear, 

however, that CepstrumA(100) is best in this case.  Not only was the best result obtained 

using this method, but overall average also indicated it is the best approach for 9-tone/16-

feature recognition. 

 

3.1.2 Speaker-Independent Results 
 
 Recognition results for speaker-independent experiments are less diverse due to a 

much larger test set.  As a result, even marginal improvements can prove significant.  

Results are similar for all three methods of feature extraction in 6-tone/8-feature 

experiments (Table 3-3).  CepstrumA does, however, seem to be the best approach.  In 9-

tone/8-feature experiments, however, it is clear that Auto Correlation is the best approach 

since recognition accuracy for this method outperformed the others by a strong margin. 
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 6-Tone 9-Tone 
 Best Average Best Average 
AC 80.4 79.0 73.4 71.2 
CepA 80.9 79.5 72.0 69.7 
CepB 80.6 79.2 70.8 69.2 

Table 3-3 Feature Extraction Results (Speaker-Independent; 8-feature) 

 
  

 Table 3-4 shows results for 6-tone/16-feature experiments.  Again, as in the 6-

tone/8-feature results, it is rather uncertain which method is best; no method stands out as 

significantly better than the others.  In 9-tone/16-feature experiments, CepstrumA(0) was 

the clear winner.  Not only were the best results obtained using this process, but the 

overall average is also much higher than the others. 

 
 
 

 6-Tone 9-Tone 
 Best Average Best Average 
AC 81.8 80.6 74.8 73.4 
CepA(s) 81.0 80.4 71.9 70.3 
CepA(0) 81.7 81.1 77.5 76.8 
CepB(s) 81.2 80.6 72.2 71.0 
CepB(0) 81.4 80.7 76.7 75.8 

Table 3-4 Feature Extraction Results (Speaker-Independent; 16-feature) 

 
   

 Auto Correlation appears to be the best method for 8-feature experiments.  In 16-

feature experiments, however, the Cepstrum approaches usually outperformed Auto 

Correlation.  CepstrumA is probably the best choice for 16-feature experiments, as 

CepstrumB does not seem to be particularly useful in Speaker-Independent experiments. 
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Overall, it is not very clear which feature extraction approach is best suited for tone 

recognition, as results vary for each system.  It is apparent, however, that for any given 

experiment the method chosen can have a considerable impact on recognition accuracy.   

 
 

3.2 Normalization 
 
 Normalization of data is only performed for speaker-independent experiments.  

The following reports on an experiment to illustrate the positive effects of normalizing 

data.  Table 3-5 compares recognition results from normalized data to results from data 

not normalized for each of the four speakers. 

 
 
 

 6-Tone 9-Tone 
 Not Normalized Normalized Not Normalized Normalized 
cs01f 28.2 85.5 27.3 74.5 
cs02m 71.8 89.3 66.1 78.4 
cs03f 37.8 67.9 30.8 62.3 
cs04m 67.9 81.4 62.9 74.8 
Average 51.4 81.0 46.8 72.5 

Table 3-5 Normalization Results (8-features) 

 
 
 
 In 6-tone/8-feature experiments, normalizing data increased average accuracy 

from 51.4% to 81.0%.  Likewise, normalizing data improved average recognition rate 

from 46.8% to 72.5% for 9-tone/8-feature experiments. 

As we will see again later, tone data from speaker cs03f is quite different from the 

other speakers’.  Even after normalization of data, recognition results for cs03f (67.9% in 

6-tone; 62.3% in 9-tone) are very poor in comparison to other speakers.  Manual 
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inspection of data from cs03f indicates that the speaker is indeed native, but her tones do 

not follow “standard” contours. 

 

3.3 Feature Trimming 

3.3.1 Speaker-Dependent Results 
 
 One of the techniques mentioned earlier (Chapter 2.2.6) is feature trimming, a 

process where certain features are ignored during the recognition process in an attempt to 

increase recognition performance.  In the 6-tone/8-feature system, 90.5% accuracy was 

achieved without implementing feature trimming (Table 3-6).  The best accuracy with 

feature trimming (89.3%) was achieved when the first and last features (i.e. I1-8) were 

ignored.  Reducing the first and last pair of features (i.e. I1-2,7-8) further reduced 

accuracy to 86.4%.  Examining averages of results yields a similar trend ― the more 

features that are ignored, the more recognition accuracy decreases.  Examination of 

results gathered from the 9-tone/8-feature system exhibit a similar trend.  Highest results 

are achieved if all available information is used. 

 
 
 

 6-Tone 9-Tone 
Method Best Average Best Average 

No Trimming 90.5 87.9 80.9 78.1 
I1-8 89.3 85.8 78.6 73.5 
I1-2,7-8 86.4 82.2 74.5 67.9 

Table 3-6 Feature Trimming Results (Speaker-Dependent; 8-feature) 

 
 
  

 Table 3-7 shows results for the 6-tone/16-feature and 9-tone/16-feature systems.  

Because 16-feature experiments have more features than 8-feature experiments, more 
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variations of feature trimming were attempted.  Similar to the 8-feature experiments, 16-

feature experiments exhibit a steady decrease in performance when features on both ends 

are ignored (i.e. I-16; I1-2,15-16; I1-3,14-16; I1-4,13-16 in Table 3-7).  In these 

instances, accuracy continues to decrease as more features are ignored.  This is in direct 

contradiction to a common practice used in tone recognition (see Chapter 2.2.6). 

 
 
 

 6-Tone 9-Tone 
Method Best Average Best Average 

No Trimming 90.0 87.8 86.8 81.4 
I1,16 89.8 87.3 86.0 80.3 
I1-2,15-16 89.3 86.7 83.9 78.6 
I1-3,14-16 88.3 85.4 81.0 76.1 
I1-4,13-16 86.3 83.4 76.8 72.4 
I1 90.4 88.2 86.8 81.7 
I1-2 90.9 88.4 87.0 81.9 
I1-3 90.4 88.4 86.0 81.7 

Table 3-7 Feature Trimming Results (Speaker-Dependent; 16-feature) 

 
 
 
 
 Results are encouraging, however, when only features at the beginning of a 

feature vector are ignored.  In 6-tone/16-feature experiments, accuracy is improved when 

the first 1, 2, or 3 features are ignored (Table 3-7).  The best result improved from 90.0% 

to 90.9% when the first 2 features were ignored. 

 9-tone/16-feature experiments show similar results ignoring the first 2 features 

yielding the best results.  The benefit, however, seems less drastic in 9-tone experiments.  

Ignoring the first 2 features increases accuracy only from 86.8% to 87.0% — an increase 

of only 0.2% compared to the 0.9% increase observed in the 6-tone experiments. 
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3.3.2 Speaker-Independent Results 
 
 Feature trimming was not attempted in either the 6-tone or 9-tone 8-feature 

systems as previous experiments strongly suggested this would only harm recognition 

accuracy.  In 16-feature experiments, attempts were limited to eliminating the first 1, 2, 

or 3 features as these exhibited best results in previous experiments.  In 6-tone/16-feature 

experiments very little change is noted in best scores obtained and absolutely no change 

in average word accuracy (Table 3-8).  The results for 9-tone/16-feature experiments 

were similar.  It does appear, however, that ignoring more features tended to slightly 

decrease average accuracy. 

 
 
 

 6-Tone 9-Tone 
Method Best Average Best Average 

No Trimming 81.8 80.7 77.3 73.5 
I1 81.6 80.7 77.4 73.6 
I1-2 81.7 80.7 77.5 73.4 
I1-3 81.6 80.7 77.3 73.2 

Table 3-8 Feature Trimming Results (Speaker-Independent; 16-feature) 

 

  

In sum, ignoring any features in an 8-feature system results in a loss of accuracy.  

When more features are used (such as in the 16-feature systems), however, ignoring the 

first two features produces the best results.  This is probably a result of greater tone 

variation in the beginning portions of tone data.  In the speaker-independent systems, no 

noticeable change in results was observed by ignoring features. 
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3.4 Feature Weighting 

3.4.1 Speaker-Dependent Results 
 
 In 6-tone/8-feature experiments, Gain Ratio and Information Gain produced the 

best results with an accuracy of 90.5% and 90.4% achieved respectively (Table 3-9).  The 

average recognition result was almost equal for each method except the Chi-squared 

approach.  In this case, average recognition results for Chi-squared was nearly a full 

percentage point lower than the other methods. 

 
 
 

 6-Tone 9-Tone 
Method Best Average Best Average 

None 89.4 85.3 80.5 74.3 
Gain Ratio 90.5 85.4 80.9 75.0 
Information Gain 90.4 85.5 80.8 74.9 
Chi-squared 89.9 84.7 80.8 74.3 
Shared Variance 89.9 85.5 80.8 74.9 

Table 3-9 Feature Weighting Results (Speaker-Dependent; 8-feature) 

 
 
 
 
 Not using a method of feature weighting resulted in lower recognition rate in 9-

tone/8-feature experiments.  The other approaches all exhibited similar results except that 

the average recognition rate using Chi-squared was slightly lower than the others. 

 A recognition rate of 90.9% was achieved using both Chi-squared and Shared 

Variance feature weighting methods (Table 3-10).  Again, the average result using Chi-

squared was noticeably lower than results from the other methods. 
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 6-Tone 9-Tone 
Method Best Average Best Average 

None 90.5 87.0 86.8 79.4 
Gain Ratio 90.4 87.1 87.0 79.5 
Information Gain 90.4 87.2 86.8 79.6 
Chi-squared 90.9 86.2 86.8 78.2 
Shared Variance 90.9 87.3 86.8 79.6 

Table 3-10 Feature Weighting Results (Speaker-Dependent; 16-feature) 

 
 
 
 Best results achieved were nearly the same for all methods in 9-tone/16-feature 

experiments.  Using Gain Ratio produced the highest score of 87.0%.  Once again, the 

average results obtained using the Chi-squared method was quite low in comparison with 

the others. 

 

3.4.2 Speaker-Independent Results 
 
 In both 6-tone/8-feature and 9-tone/8-feature experiments, no particular feature 

weighting method separated itself as the best approach (Table 3-11).  It is clear, however, 

that not using a method produced lower recognition accuracy in the 9-tone/8-feature 

experiments.  Similar to the speaker-dependent results, the Chi-squared method achieved 

the lowest scores in total average. 

 
 

 6-Tone 9-Tone 
Method Best Average Best Average 

None 80.7 79.3 72.2 70.1 
Gain Ratio 80.8 79.6 73.4 70.6 
Information Gain 80.5 79.5 73.3 70.5 
Chi-squared 80.9 78.2 73.0 68.6 
Shared Variance 80.9 79.5 73.0 70.4 

Table 3-11 Feature Weighting Results (Speaker-Independent; 8-feature) 
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 Each method achieved nearly identical scores in both the 6-tone/16-feature and 9-

tone/16-feature experiments (Table 3-12). 

 
 
 

 6-Tone 9-Tone 
Method Best Average Best Average 

Gain Ratio 81.8 80.7 77.5 73.4 
Information Gain 81.6 80.7 77.4 73.4 
Chi-squared 81.8 80.7 77.4 73.5 
Shared Variance 81.8 80.7 77.4 73.5 

Table 3-12 Feature Weighting Results (Speaker-Independent; 16-feature) 

 
 
 
 
 In sum, there is no clear best method of feature weighting.  The Gain Ratio and 

Information Gain methods are very similar and the above results show that between the 

two of these approaches, Gain Ratio is best suited for this task.  Information Gain never 

achieved better results than Gain Ratio.  Chi-squared and Shared Variance are also very 

similar in their approach, but in this case, the best results achieved are identical in every 

table above.  Average scores are much higher for Shared Variance, however, so this 

might be a better choice.  With only a few exceptions, the Gain Ratio method achieved 

the highest accuracy in each case.  It would seem that this approach is the one best suited 

for the Cantonese tone recognition task.  It is clear that in systems using 9 tones and 8 

features, not weighting the features harms accuracy.  It is unclear, however, why the 

average score using the Chi-squared methodology in every system was noticeably lower 

than the others.  Its lack of a normalizing element may be a key contributor to its relative 

inefficiency. 
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3.5 k-values 

3.5.1 Speaker-Dependent Results 
 
 Changing values of k can have a strong effect on recognition rate.  In 6-tone/8-

feature experiments, the overall result is that the higher the k-value, the higher the 

accuracy (Table 3-13).  While the average continued to improve with an increase of k, the 

absolute best score was obtained using a k-value of 13.  Best results for 9-tone/8-feature 

experiments were obtained using k-values of 11 or 13.  Using a k-value of 9, however, 

achieved the best results when averaging all experiments. 

 
 
 

 6-Tone 9-Tone 
k-value Best Average Best Average 

1 86.8 82.8 78.8 74.9 
3 89.3 84.3 80.0 77.4 
5 89.8 85.2 80.4 78.0 
7 89.8 85.7 80.1 78.2 
9 90.4 86.0 80.3 78.4 
11 90.4 86.1 80.6 78.2 
13 90.5 86.2 80.6 78.1 
15 90.1 86.2 80.4 78.2 

Table 3-13 k-value Results (Speaker-Dependent; 8-feature) 

 
 
 
 In 6-tone/16-feature experiments, average recognition rate continually improved 

with an increase of k-value (Table 3-14).  The highest singular result, however, was 

achieved using a k-value of 5.  There was no clear trend in 9-tone/16-feature results.  In 

this case, using a k-value of 11 obtained the highest result, whereas the highest average 

was achieved by using 7 as the k-value. 
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 6-Tone 9-Tone 
k-value Best Average Best Average 

1 88.3 85.0 84.0 77.6 
3 90.3 86.5 86.1 79.0 
5 90.9 87.2 86.8 79.6 
7 90.4 87.3 86.6 79.8 
9 90.5 87.4 86.5 79.7 
11 90.3 87.4 87.0 79.6 
13 90.5 87.4 86.6 79.5 
15 90.4 87.4 86.8 79.3 

Table 3-14 k-Value Results (Speaker-Dependent; 16-feature) 

 
 

3.5.2 Speaker-Independent Results 
 
 Due to the larger test size for speaker-independent experiments, the trend is much 

more apparent than in the speaker-dependent systems (Table 3-15).  Each of these 

experiments illustrates that the higher the k-value, the higher the average recognition 

accuracy.  Furthermore, the highest score obtained in each experiment was 15.  The lone 

exception was in the 9-tone/16-feature experiment where a k-value of 13 resulted in the 

best score. 

 
 

 6-Tone 9-Tone 
k-value Best Average Best Average 

1 77.9 77.5 68.8 67.0 
3 79.6 78.5 71.6 68.9 
5 79.9 79.1 72.5 69.9 
7 80.2 79.4 73.1 70.6 
9 80.6 79.6 73.1 70.9 
11 80.8 79.8 73.3 71.0 
13 80.8 79.9 73.2 71.0 
15 80.9 79.9 73.4 71.1 

Table 3-15 k-Value Results (Speaker-Independent; 8-feature) 
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 6-Tone 9-Tone 
k-value Best Average Best Average 

5 81.2 79.9 73.9 69.9 
7 81.4 80.4 74.3 71.1 
9 81.5 80.6 74.7 71.7 
11 81.6 80.8 74.7 72.0 
13 81.8 80.8 74.8 72.3 
15 81.8 80.9 74.6 72.4 

Table 3-16 k-Value Results (Speaker-Independent; 16-feature) 

 
 

3.6 Class Voting Weights 

3.6.1 Speaker-Dependent Results 
 
 On average, using the normal weighting method performed best for 6-tone/8-

feature experiments (Table 3-17).  The best overall performance, however, was achieved 

using the Inverse Linear approach, in which 90.5% accuracy was attained.  In the 9-

tone/8-feature experiments, Inverse Distance method achieved the best results.  The 

Inverse Distance approach also achieved the highest average score (along with the 

Inverse Linear method). 

 

 
 6-Tone 9-Tone 

Method Best Average Best Average 
Normal 90.1 85.6 80.6 73.2 
Exponential Decay 90.4 85.0 80.8 72.9 
Inverse Linear 90.5 85.5 80.8 73.4 
Inverse Distance 90.0 85.1 80.9 73.4 

Table 3-17 Class Voting Weights Results (Speaker-Dependent; 8-feature) 

 
   

 Results for both the 6-tone/16-feature experiments as well as the 9-tone/16-feature 

experiments mirrored the results from the 8-feature experiments presented above (Table 
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3-18).  Results from the 6-tone/16-feature experiments show the same trend as the 6-

tone/8-feature experiments in that Inverse Linear produced the best overall performance, 

whereas using the normal weighting method attained the best average score. 

 
 
 

 6-Tone 9-Tone 
Method Best Average Best Average 

Normal 90.5 86.9 86.3 79.6 
Exponential Decay 90.8 85.0 86.8 77.6 
Inverse Linear 90.9 86.5 86.6 79.0 
Inverse Distance 90.4 87.2 87.0 79.6 

Table 3-18 Class Voting Weights Results (Speaker-Dependent; 16-feature) 

 
 
 
 The 9-tone/16-feature results show the same trend as the 9-tone/8-feature results 

in that the Inverse Distance method achieves top scores for both best overall result as 

well as best average score. 

 
 

3.6.2 Speaker-Independent Results 
 
 Results from 6-tone/8-feature experiments show that using the Inverse Linear 

approach produced the best recognition rate (Table 3-19).  The Inverse Linear and 

Normal weighting methods achieved the best average result.  In 9-tone/8-feature 

experiments, the Inverse Distance approach got the highest score.  When averaging all 

experiments, Inverse Linear produced the highest score of 70.7%. 
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 6-Tone 9-Tone 
Method Best Average Best Average 

Normal 80.7 79.6 72.8 70.5 
Exponential Decay 80.7 78.6 73.2 69.2 
Inverse Linear 80.9 79.6 73.3 70.7 
Inverse Distance 80.6 79.1 73.4 69.8 

Table 3-19 Class Voting Weights Results (Speaker-Independent; 8-feature) 

 
 

 Both the 6-tone/16-feature and 9-tone/16-feature experiments show similar results 

(Table 3-20).  In both experiments, using the Inverse Linear method produced the best 

results, achieving an accuracy of 81.8% and 77.5% in the 8-feature and 16-feature 

experiments respectively.  In both experiments, however, using Inverse Distance 

produced the highest average. 

 
 
 

 6-Tone 9-Tone 
Method Best Average Best Average 

Inverse Linear 81.8 80.1 77.5 72.4 
Inverse Distance 81.6 80.6 77.3 73.2 

Table 3-20 Class Voting Weights Results (Speaker-Independent; 16-feature) 

 

 

 In sum, it appears that for speaker-dependent systems, using the Inverse Distance 

approach works best for the 9-tone experiments, whereas the Inverse Linear method 

achieves best results for the 6-tone experiments.  In the speaker-independent experiments, 

using the Inverse Linear approach produces the highest scores in each case except for 9-

tone/8-feature experiments in which it is a close second (Table 3-19). 
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3.7 Classification Algorithms 
 
 The following reports work done to test whether IB1 is indeed the classification 

algorithm best suited for the tone recognition task.  As noted in Chapter 2, IB1 is the 

default and usually most accurate method, though at the expense of high computational 

cost. 

 Recognition results for speaker cs01f are provided in Table 3-21.  In preliminary 

tests, features were extracted using the Auto Correlation method, the k-value was set to 1, 

and no features were trimmed.  Because the k-value was set to 1, there was no need for 

class voting weights. 

 
 
 

 6-Tone 9-Tone 
Experiment IGTREE IB1 IGTREE IB1 

MVDM (no weighting) 80.0 89.0 63.5 78.5 
MVDM (gain ratio) 80.0 89.5 63.5 79.0 
MVDM (information gain) 80.0 91.0 63.5 78.5 
MVDM (chi-squared) 80.0 89.0 63.5 79.0 
MVDM (shared variance) 80.0 89.0 63.5 79.0 
Numeric (no weighting) 80.0 91.0 63.5 81.5 
Numeric (gain ratio) 80.0 90.5 63.5 80.5 
Numeric (information gain) 80.0 90.0 63.5 79.5 
Numeric (chi-squared) 80.0 93.0 63.5 83.5 
Numeric (shared variance) 80.0 93.0 63.5 83.5 
AVERAGE 80.0 90.5 63.5 80.3 

Table 3-21 Algorithm Results (8-feature) 

 

 

In 6-tone/8-feature experiments, average results increased from 80.0% to 90.5% 

when using the IB1 classification algorithm.  In 9-tone/8-feature experiments, average 
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IGTREE accuracy of 63.5% was improved to 80.3% when using IB1.  This study shows 

that IB1 is indeed more appropriate for the Cantonese tone recognition task. 

 
 

3.8 Number of Features 
 
 The decision of how many features to extract from a file is very important.  

Clearly, the more features that are used, the more data is present to aid the training and 

classification processes.  As expected, using 16 features (84.3%) produced a higher 

recognition rate than using 8 features (81.4%)(Table 3-22). 

 
 
 

 8 Features 16 Features 
Speaker-Dependent 6-Tone 90.5 90.9 
Speaker-Dependent 9-Tone 80.9 87.0 
Speaker-Independent 6-Tone 80.9 81.8 
Speaker-Independent 9-Tone 73.4 77.5 
AVERAGE 81.4 84.3 

Table 3-22 Results for 8-feature vs. 16-feature comparison 

 
 
 
 Using 16 features instead of 8 produced a relatively small increase in accuracy in 

6-tone systems.  A 0.4% increase was noted for speaker-dependent 6-tone systems, as 

well as a 0.9% increase for speaker-independent 6-tone systems. 

 Using 16 features greatly enhanced recognition rate for 9-tone systems however.  

For speaker-dependent 9-tone experiments, the best score was improved by 6.1%.  The 

speaker-independent equivalent was improved by 4.1%. 

 It is clear that using 16 features produces better accuracy than using 8 features.  

The benefit is far greater for 9-tone recognition systems.  The optimal number of features 
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to use for the Cantonese tone recognition task is still not clear.  Two sample experiments 

were performed using 32 features, for example, and accuracy decreased from that 

obtained using 16 features.  This shows that using more features does not necessarily 

yield higher accuracy. 

The optimal number of features to use may be a function of the average number 

of features returned from the feature extraction method.  In cases where the number of 

features is large, such as 32, accuracy decreases because a large number of test cases do 

not have the required number of features, thus necessitating data creation through feature 

manipulation steps mentioned earlier in Chapter 2.2. 

 As noted earlier, one benefit of using an 8-feature system rather than a 16-feature 

system is less computational cost.  Although this may be a viable option for 6-tone 

systems, choosing to use 8 features for a 9-tone system considerably decreases 

performance. 

 
 

3.9 Number of Tones 
 
 Table 3-23 shows that simplifying the Cantonese tone recognition task to only 6 

tones greatly increases recognition rate.  Average accuracy for 9-tone systems is 79.7%, 

whereas the average for 6-tone systems is improved to 86.0%.  The difference is greater 

for systems using only 8 features.  Speaker-dependent 8-feature accuracy was improved 

by 9.6% by simplifying the task to a 6-tone system.  Likewise, the speaker-independent 

8-feature system exhibited a 7.5% increase.  It is possible that 9-tone systems require a 

larger number of features than 6-tone systems do.  This would account for the relatively 

low results for the 9-tone, 8-feature experiments. 
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 9-Tone 6-Tone Increase(%) 
Speaker-Dependent 8-Features 80.9 90.5 +9.6 
Speaker-Dependent 16-Features 87.0 90.9 +3.9 
Speaker-Independent 8-Features 73.4 80.9 +7.5 
Speaker-Independent 16-Features 77.5 81.8 +4.3 
AVERAGE 79.7 86.0 +6.3 

Table 3-23 Results for 6-tone vs. 9-tone comparison 

 
 
 
 For experiments using 16 features, the change is less dramatic.  An increase of 

3.9% is noted for the speaker-dependent 16-feature system, as well as a 4.3% increase for 

the speaker-independent system. 

 It is clear that if a recognition task can be done using a 6-tone classification, 

recognition accuracy will be higher than by using a 9-tone classification system. 

 
 

3.10 Speaker Dependency 
 
 According to Table 3-24, speaker-dependent systems outperformed their speaker-

independent counterparts.  The average result for speaker-dependent systems is 87.3%, 

compared to an average of 78.4% for speaker-independent systems. 

 
 
 

 Speaker 
Dependent 

Speaker 
Independent 

6-Tone, 8-Features 90.5 80.9 
6-Tone, 16-Features 90.9 81.8 
9-Tone, 8-Features 80.9 73.4 
9-Tone, 16-Features 87.0 77.5 
AVERAGE 87.3 78.4 

Table 3-24 Results for Speaker-Dependent and Speaker-Independent systems 
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 Remember, however, that the speaker-independent results presented here are not 

truly speaker-independent per se.  In speaker-independent experiments, average tonal 

frequency was calculated for use in the normalization process.  Of course, a speaker’s 

average frequency must be known a priori in order for the results presented here to be 

accurate.  One option for implementation would be to perform a minimal amount of 

speaker training.  Collecting just a few speech samples would probably be suitable.  

Another option is to perform online training (i.e. continually recalculate average 

frequency).  In this case, the first few speech items may be normalized poorly, but 

accuracy would quickly improve. 

 

3.11 Best Methods 
 
 Table 3-25 shows the best combination of parameters found for each system.  For 

example, in speaker-dependent 6-tone/8-feature experiments the highest result of 90.5% 

was achieved while using the Auto Correlation method of extracting features, no feature 

trimming, Gain Ratio approach for feature weighting, a k-value of 13, and Inverse 

Distance as the class voting weighting method.  A legend of abbreviations used in Table 

3-25 is provided in Table 3-26 for the reader’s convenience.   Chapter 2 contains 

additional information regarding the items presented here. 

 Table 3-25 does not present any new information as earlier sections have already 

covered the data in more detail.  The data is presented here as a concise summary of 

results for all 8 systems. 
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 FE Trim FW  k CVW % 
Speaker-Dependent 6-Tone/8-Feature AC --- gr 13 ID 90.5 
Speaker-Dependent 9-Tone/8-Feature CepB --- gr 11/13 IL 80.9 
Speaker-Dependent 6-Tone/16-Feature CepB(0) I1-2 sv/χ2 5 ID 90.9 
Speaker-Dependent 9-Tone/16-Feature CepA(100) I1-2 gr 11 IL 87.0 
Speaker-Independent 6-Tone/8-Feature CepA --- sv 15 ID 80.9 
Speaker-Independent 9-Tone/8-Feature AC --- gr 15 IL 73.4 
Speaker-Independent 6-Tone/16-Feature CepA(s) --- sv/χ2 13 ID 81.8 
Speaker-Independent 9-Tone/16-Feature CepA(0) I1-2 gr 15 ID 77.5 

Table 3-25 Parameters producing best results for all 8 systems 

 
FE Feature Extraction Method 
Trim. Features Trimmed 
FW Feature Weighting Method 
CVW Class Voting Weighting Method 
AC Auto Correlation 
CepB CepstrumB 
CepB(0) CepstrumB(Zero-Addition) 
CepA(100) CepstrumA(100-Addition) 
CepA CepstrumA 
CepA(s) CepstrumA(Stretched) 
CepA(0) CepstrumA(Zero-Addition) 
I1-2 Ignore 1st and 2nd feature 
gr Gain Ratio 
sv Shared Variance 
χ2 Chi-squared 
ID Inverse Distance 
IL Inverse Linear 

Table 3-26 Legend of Abbreviations for Table 3-25 

 
 

3.12 Error Analysis 
 
 A common tool for analyzing classification errors is a confusion matrix, where 

classification errors can be analyzed.  Confusion matrices are presented below to 

facilitate the analysis of errors produced during tone classification.  Numbers in the 

matrices represent sums of results obtained from all four speakers.  More detail for each 

individual speaker is provided in Appendices A-H.  In each system, data is only presented 
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for the method producing the highest accuracy.  For more detail on which set of 

parameters produced these results, refer back to Chapter 3.11. 

 

3.12.1 Speaker-Dependent Results 
 
 Interestingly, Table 3-27 shows that tone #5 is the most difficult to recognize, 

only being recognized correctly 80.0% of the time.  No mention of this phenomenon is 

found in previous literature.  Recognition of tones #3 and #6 is also relatively poor 

achieving 87.2% and 86.8% accuracy respectively.  In contrast, tones #1, #2, and #4 all 

perform very well. 

 
 

 1 2 3 4 5 6 % 
1 155 0 5 1 0 3 94.5% 
2 0 147 1 0 8 0 94.2% 
3 3 0 150 0 0 19 87.2% 
4 3 0 0 99 1 1 95.2% 
5 0 3 3 3 48 3 80.0% 
6 0 0 16 3 0 125 86.8% 
      AVG 90.5% 

Table 3-27 Confusion Matrix for Best Method (Speaker-Dependent; 6-tone/8-feature) 

 
 
 
 The majority of errors appear to be due to a misclassification between tones with 

similar contours.  Tones #1, #3, and #6 all have identical contour patterns and are 

primarily distinguished by frequency only.  Misclassifications between the level tones 

(i.e. #1, #3, and #6) account for 46 of the 76 errors reported (61%).  Confusion between 

tones #3 and #6 is much greater than the confusion of either tone with tone #1.  This is 

very understandable as the average frequency between the two tones is quite close. 
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 In the 9-tone/8-feature system, similar trends were noted (Table 3-28).  The 

majority of misclassifications are again most common between tones with identical 

contours.  The short-duration tones (i.e. tones #7, #8, and #9) had by far the lowest 

recognition rates.  67 of the 153, or 44%, of the errors are due to the inability to 

distinguish between tones differing by length only (i.e. tone #1 with #7, #3 with #8, and 

#6 with #9).  Another difficulty is in distinguishing between tones #2 and #5.  This 

problem accounts for 15 of the errors.  Very high accuracy continues to be achieved for 

tones #1, #2, and #4. 

 
 
 

 1 2 3 4 5 6 7 8 9 % 
1 111 0 3 0 0 0 2 0 0 95.7% 
2 0 145 0 1 7 1 0 0 2 92.9% 
3 3 0 107 0 0 12 0 4 2 83.6% 
4 0 0 0 100 0 4 0 0 0 96.2% 
5 0 8 1 1 46 4 0 0 0 76.7% 
6 0 0 9 1 2 48 0 0 4 75.0% 
7 15 0 0 0 0 0 33 0 0 68.8% 
8 0 1 16 1 2 2 0 16 6 36.4% 
9 0 0 4 2 1 26 0 6 41 51.3% 
         AVG 80.9% 

Table 3-28 Confusion Matrix for Best Method (Speaker-Dependent; 9-tone/8-feature) 

 
 
 
 
 The conclusions drawn from the 6-tone/8-feature experiments are the same as the 

6-tone/16-feature experiments shown in Table 3-29.  Tone #5 achieves the worst 

accuracy.  Recognition for tones #1, #2, and #4 are again very high.  Distinguishing 

between tones #2 and #5, as well as distinguishing between #3 and #6 continues to be 

extremely difficult, and a common source of errors for this recognizer. 
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 1 2 3 4 5 6 % 
1 161 0 3 0 0 0 98.2% 
2 0 146 1 1 6 2 93.6% 
3 3 0 143 0 1 21 85.1% 
4 0 0 0 103 0 1 99.0% 
5 0 8 1 1 46 4 76.7% 
6 0 0 17 2 1 128 86.5% 
      AVG 90.9% 

Table 3-29 Confusion Matrix for Best Method (Speaker-Dependent; 6-tone/16-feature) 

 

 

 Table 3-30 shows the confusion matrix for the 9-tone/16-feature system.  

Accuracy is high for tones #1 and #4, but results for tone #2 are lower in comparison to 

earlier findings.  Results are low for tone #5.  Previously, recognition rate for tones #7, 

#8, and #9 were much lower than recognition rate for other tones.  Although they still 

perform poorly, the difference is not as great.  In fact, recognition accuracy for tone #7 

performed extremely well, even better than many of the other tones.  Interestingly, tone 

#3 and #6 continue to be confused, as well as tone #2 with tone #5.   

 
 
 

 1 2 3 4 5 6 7 8 9 % 
1 109 0 3 0 0 0 4 0 0 94.0% 
2 0 138 0 1 10 1 0 0 6 88.5% 
3 1 0 111 0 0 12 0 0 0 89.5% 
4 0 0 0 103 0 1 0 0 0 99.0% 
5 0 10 1 1 45 3 0 0 0 75.0% 
6 0 0 7 1 0 55 0 0 1 85.9% 
7 5 0 1 0 0 0 42 0 0 87.5% 
8 0 0 4 0 0 1 0 31 8 70.5% 
9 0 0 1 5 0 11 0 5 62 73.8% 
         AVG 87.0% 

Table 3-30 Confusion Matrix for Best Method (Speaker-Dependent; 9-tone/16-feature) 
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3.12.2 Speaker-Independent Results 
 
 In the speaker-independent 6-tone/8-feature system, tone #1 is recognized 

extremely well at 96.1% (Table 3-31).  Tone #5 is recognized poorly at only 61.0%.  572 

of the 1369 errors (42%) are due to the inability to distinguish the level tones (i.e. tones 

#1, #3, and #6) from each other.  Worthy of note, it appears that many tones were 

misrecognized as tone #6.  This is particularly surprising because this behavior was not 

exhibited in the speaker-dependent system. 

 
 
 

 1 2 3 4 5 6 % 
1 1622 10 52 3 0 1 96.1% 
2 3 1000 17 9 144 91 79.1% 
3 61 3 1079 1 1 251 77.3% 
4 0 0 0 796 2 190 80.6% 
5 0 78 11 11 332 112 61.0% 
6 0 6 207 91 16 968 75.2% 
      AVG 80.9% 

Table 3-31 Confusion Matrix for Best Method (Speaker-Independent; 6-tone/8-feature) 

 
 
 
 
 Recognition errors for tones #7, #8, and #9 are the primary source of errors for the 

9-tone/8-feature system (Table 3-32).  Tone #3 is also not recognized very well.  

Accuracy is relatively high, however, for tones #1 and #2.  The vast majority of errors 

continue to be a result of confusion between level tones (i.e. #1, #3, #6, #7, #8, #9). 
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 1 2 3 4 5 6 7 8 9 % 
1 1112 0 139 9 0 11 35 1 1 85.0% 
2 1 1160 1 2 96 3 0 1 0 91.8% 
3 116 0 637 0 0 176 4 55 24 62.9% 
4 59 1 0 768 27 59 26 0 48 77.7% 
5 1 36 16 6 421 51 0 4 9 77.4% 
6 1 0 126 11 15 654 0 23 34 75.7% 
7 149 1 20 7 0 1 184 18 0 48.4% 
8 20 1 119 0 7 41 13 136 46 35.5% 
9 1 1 47 20 5 109 0 51 190 44.8% 
         AVG 73.4% 

Table 3-32 Confusion Matrix for Best Method (Speaker-Independent; 9-tone/8-feature) 

 
 
 
 
 Tones #1 and #2 perform very well in the 6-tone/16-feature system achieving 

recognition rates of 89.4% and 92.7% respectively (Table 3-33).  782 of the 1304 errors 

(60%) were due to confusion between the level tones.  Similar to the speaker-independent 

6-tone/8-feature results, many tones are misrecognized as tone #6.  It is unclear why this 

is only the case for speaker-independent 6-tone systems.   

 
 

 1 2 3 4 5 6 % 
1 1509 1 152 15 0 11 89.4% 
2 2 1172 5 2 80 3 92.7% 
3 137 1 985 1 4 267 70.6% 
4 116 0 0 745 22 105 75.4% 
5 2 28 26 5 421 62 77.4% 
6 3 3 212 27 10 1033 80.2% 
      AVG 81.8% 

Table 3-33 Confusion Matrix for Best Method (Speaker-Independent; 6-tone/16-feature) 
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 Table 3-34 shows the confusion matrix for the 9-tone/16-feature system.  Best 

recognition rate is for tone #1 achieving 94.5% recognition accuracy.  Interestingly, the 

worst recognition is for tone #8 with only 49.2% accurately classified.   

 
 
 

 1 2 3 4 5 6 7 8 9 % 
1 1236 3 35 3 0 0 29 2 0 94.5% 
2 0 954 22 7 172 66 12 3 28 75.5% 
3 46 0 784 0 0 165 0 9 4 77.8% 
4 0 0 0 826 1 104 0 0 57 83.6% 
5 0 53 11 4 377 97 0 1 1 69.3% 
6 0 0 178 35 10 612 0 5 24 70.8% 
7 53 6 4 0 0 0 300 15 2 78.9% 
8 9 2 88 1 0 10 9 189 76 49.2% 
9 0 3 14 44 1 61 0 26 275 64.9% 
         AVG 77.5% 

Table 3-34 Confusion Matrix for Best Method (Speaker-Independent; 9-tone/16-feature) 

 
 
 
 
 It is clear that the primary weakness of this approach is its inability to distinguish 

between tones with identical contours.  In all systems analyzed, tone #1 is by far the most 

easily recognized tone.  This is surprising since the tonal contour is identical to many of 

the other tones, but accuracy remains high probably due to its higher frequency, thus 

clearly separating itself from the other tones.  Because the tonal contours for tones #2 and 

#5 are similar, as well, it is interesting to note that recognition was also found to have 

problems distinguishing these two tones.  Surprisingly, tone #5 was particularly difficult 

to recognize. 

In 6-tone systems, the majority of errors result from confusion between tones #1, 

#3, and #6, especially between #3 and #6.  In 9-tone systems, recognition is very difficult 
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since there are so many level tones.  6 of the 9 tones (i.e. #1, #3, #6, #7, #8, #9) in these 

experiments are level tones.  For this reason, it is no surprise to observe low recognition 

for the level tones. 

 

3.13 Results by Speaker 
 
 Table 3-35 shows recognition results for individual speakers for Speaker-

Dependent experiments.  More detail can be found in the appendices.  Analysis of the 

average recognition rate for speaker-dependent experiments shows which speaker’s tones 

are consistent when compared to other tones from the same speaker.  Speaker cs01f 

achieves the highest score with an average of 90.9%.  This suggests that this speaker is 

most consistent as her tones best matched her other samples.  Speaker cs03f, on the other 

hand, is the most inconsistent, as shown by the recognizer’s difficulty in recognizing her 

tones. 

 

 

 6-Tone/ 
8-Feature 

6-Tone/ 
16-Feature 

9-Tone/ 
8-Feature 

9-Tone/ 
16-Feature 

AVG 

cs01f 94.5 95.0 79.5 94.5 90.9 
cs02m 89.5 90.0 83.0 88.0 87.6 
cs03f 89.5 87.5 80.5 79.5 84.3 
cs04m 88.5 91.0 80.5 86.0 86.5 

Table 3-35 Individual Speaker Recognition Accuracy (Speaker-Dependent) 

 

 

 Individual speaker results for speaker-independent experiments are shown in 

Table 3-36.  Again, the most striking observation is the low results for speaker cs03f, 
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particularly in the 6-tone/8-feature and 9-tone/16-feature systems.  In both cases, 

recognition rate is drastically lower than other speakers.  This shows that the tones from 

cs03f are not very similar to those from the other three speakers.  It is not clear why 

results are not exceptionally poor in the 6-tone/16-feature and 9-tone/8-feature systems.  

In Appendix C, for instance, tone #4 is recognized very well for the other three speakers 

(99.2%, 100.0%, and 99.6%).  For cs03f, however, accuracy is only 23.5%.  Clearly data 

from cs03f is quite different from data from the others, confirming what was previously 

suggested in Chapter 2.2.5. 

 

 6-Tone/ 
8-Feature 

6-Tone/ 
16-Feature 

9-Tone/ 
8-Feature 

9-Tone/ 
16-Feature 

AVG 

cs01f 86.6 86.0 76.2 83.9 83.2 
cs02m 90.0 85.2 76.7 85.7 84.4 
cs03f 62.8 79.7 75.5 58.5 69.1 
cs04m 84.1 76.3 65.3 81.9 76.9 

Table 3-36 Individual Speaker Recognition Accuracy (Speaker-Independent) 

 
 

Without data from more speakers, however, it will be unclear as to how erratic 

data is from this speaker.  Manual inspection of several speech samples given by speaker 

cs03f confirmed that the speaker’s tones are noticeably different in contour than the 

typical speaker.  The developers of CUSYL, however, have made no mention of such 

idiosyncrasy. 

 

3.14 Mandarin Tone Recognition 
 

After discussing the viability of using memory-based learning for Cantonese tone 

recognition, it is natural to wonder if this same approach could perform equally well for 
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Mandarin tone recognition.  This section shows that a Mandarin tone recognizer could 

theoretically perform much better than the Cantonese tone recognizer presented in this 

thesis. 

 In the Mandarin tone recognition task there are four tones: high level (1st tone), 

middle rising (2nd tone), dipping-then-rising tone (3rd tone), and a high falling tone (4th 

tone).  The 1st tone in Mandarin is essentially identical to Cantonese tone #1.  The 2nd 

tone is extremely similar to Cantonese tone #2.  Mandarin tone #3 is similar to Cantonese 

tone #5 in that both tones dip then rise again.  The Mandarin 4th tone is similar to 

Cantonese tone #4 in that both tones fall sharply.  The main distinction between the 

Mandarin 4th tone and Cantonese tone #4 is pitch, not contour. 

 Simplifying the Cantonese tone recognition task to the four tones noted above 

produced the results shown below.  The figures in Table 3-37 are merely conjecture as 

the numbers are merely computed by eliminating errors not possible using the 

hypothetical 4-tone approach. 

 
 
 

 Results(%) 
Speaker-Dependent, 8-Features 96.3 
Speaker-Dependent, 16-Features 98.1 
Speaker-Independent, 8-Features 88.9 
Speaker-Independent, 16-Features 92.7 

Table 3-37 Mandarin Tone Recognition Results (Speculative) 

 
 
 
 Because Mandarin possesses fewer tones than Cantonese, as well as tones with 

unique tonal contours, it is expected that the application of memory-based learning to 
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Mandarin tone recognition would perform extremely well due to increased simplicity of 

the task. 

 It has been shown in this chapter that memory-based learning is indeed a viable 

approach for Cantonese tone recognition.  The results that have just been presented in this 

chapter will now be summarized in the next chapter, along with suggestions for future 

work using memory-based learning in application to tone recognition. 
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4 Conclusions 
 

The primary goal of this thesis was to explore memory-based learning as a viable 

approach for Cantonese tone recognition.  90.9% accuracy was attained for the speaker-

dependent 6-tone system, and 87.0% for the 9-tone system.  For speaker-independent 

systems, accuracies of 81.8% and 77.5% were attained for the 6-tone and 9-tone systems 

respectively.  The 90.9% accuracy in speaker-dependent experiments is comparable with 

the work of Tan Lee et al. (1993,1995) in which 89.0% was reported using a neural 

network classifier.  Thousands of parameter permutations were attempted to find which 

combination is best for the memory-based learning approach. 

Choice of feature extraction method has a considerable effect on recognition 

accuracy.  Auto Correlation was found to be the best method of feature extraction for 

experiments using only 8 features.  This method, however, did not perform as well in 

experiments using 16 features.  Rather, the Cepstrum methods (both CepA and CepB) 

work best, particularly when using the zero-addition or 100-addition method of feature 

selection. 

 A key part of memory-based learning is its classification algorithm.  The IB1 

algorithm was compared with the popular IGTREE method.  As suggested in TiMBL 

documentation, the IB1 algorithm was shown to produce highest accuracy in this work. 

As expected, normalizing fundamental frequencies was found to be essential for 

speaker-independent experiments.  Accuracy increases from 51.4% to 81.0% for 6-tone 

experiments and 46.8% to 72.5% for 9-tone experiments were observed when the features 

were normalized.  Normalizing data also proved useful in isolating inconsistent speakers 

(in this study, speaker cs03f). 
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 A common technique in both Cantonese and Mandarin feature-based tone 

recognition is to trim features on both ends of the feature vector in an attempt to eliminate 

erratic tone data.  When using 8 features, the best results in this thesis were found by not 

trimming any features off the feature vectors.  In fact, a direct correlation was observed in 

which the more features were ignored, the lower the accuracy.  In the speaker-dependent 

16-feature system, it was found that ignoring the first two features attained best results in 

speaker-dependent systems.  In speaker-independent 16-feature systems, no significant 

benefit was observed through either trimming or not trimming. 

 It appears the choice of feature weighting method makes very little difference in 

accuracy results.  For most recognition systems explored, no significant advantage was 

observed by any of the feature weighting methods attempted in this study.  It was clear, 

however, that in 9-tone/8-feature systems, not using any feature weighting method 

resulted in lower accuracy than any of the methods for feature weighting.  With only a 

couple of small exceptions, using the Gain Ratio method achieved highest recognition 

accuracy albeit by very small margins. 

 In calculating distances between features, k-values determine how many nearest-

neighbors to consider in the computation. The general trend observed in this work is that 

the higher the value of k, the better the accuracy.  This is especially true in speaker-

independent systems.  It could be that using a value k-value higher than 15 could result in 

even better results; maximum accuracy of several experiments was found when the value 

of k was set to 15.  Further empirical work could be done to determine the optimum value 

of k for these experiments. 
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 Intertwined with k-values is the class voting weights method.  Each method 

implemented performed similarly.  The Inverse Linear and Inverse Distance methods 

achieved the best results.  Inverse Linear is the best method for 6-tone systems, whereas 

Inverse Distance is the best for 9-tone systems.  Speaker-independent systems tended to 

favor the Inverse Linear approach. 

 It is not clear how many features are optimal when extracting fundamental 

frequencies from a speech item.  Clearly, too few features don’t provide enough 

information, whereas too many features provides too much.  In this study, 16-feature 

experiments were performed in order to facilitate comparison with other tone recognition 

techniques, since several researchers have arbitrarily chosen to use 16 features.  

Experiments were performed using 8 features to see how recognition rate is affected by 

using a smaller, and less computationally costly, feature vector. 

Average recognition for 16-feature systems was 84.3%; average recognition for 8-

feature systems was 81.4%.  The difference was much greater for 9-tone systems than for 

6-tone systems.  Using 8 features instead of 16 resulted in a loss of only 0.4% in the 

speaker-dependent 6-tone system and 0.9% in the speaker-independent 6-tone system.  In 

9-tone systems, however, losses of 6.1% and 4.1% are observed.  If computational 

restrictions do not exist, then clearly using 16 features is better.  Using 8 features is a 

viable option in that it will lessen computational burden with only a slight loss of 

accuracy, especially in 6-tone recognition systems. 

 A very important decision to make when designing a Cantonese tone recognizer is 

how many tones to categorize between.  Because the number of tones in Cantonese is 

debatable, several possibilities exist.  In this thesis, a comparison between 6-tone systems 
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and 9-tone systems was performed.  The average result attained in the 9-tone systems was 

79.7%, whereas 6-tone systems achieved 86.0%.  The fact that higher accuracy was 

obtained using a 6-tone system is not surprising as the additional three tones used in a 9-

tone system are extremely similar to existing tones in the 6-tone system.  In addition, 

extra tones introduce more opportunities for misclassification.  Unless the need exists for 

a 9-tone system, the use of a 6-tone system is strongly recommended. 

 Results from speaker-dependent experiments were found to be much higher than 

those from speaker-independent experiments.  The average result attained in speaker-

dependent experiments was 87.3%, whereas average results were 78.4% on speaker-

independent experiments.  The speaker-independent results, however, are not truly 

speaker-independent in that average tone frequency for each speaker was predetermined 

and used in the normalization process.  A true speaker-independent system could, 

however, normalize data online during processing or be precomputed with only a 

minimal amount of speaker training. 

 For each of the 8 systems developed in this thesis, a different combination of 

parameters produced the highest results.  Table 4-1 and Table 4-2 are reproduced here to 

summarize which parameters attained best results for each of the 8 systems. 

 
 

 FE Trim FW  k CVW % 
Speaker-Dependent 6-Tone/8-Feature AC --- gr 13 ID 90.5 
Speaker-Dependent 9-Tone/8-Feature CepB --- gr 11/13 IL 80.9 
Speaker-Dependent 6-Tone/16-Feature CepB(0) I1-2 sv/χ2 5 ID 90.9 
Speaker-Dependent 9-Tone/16-Feature CepA(100) I1-2 gr 11 IL 87.0 
Speaker-Independent 6-Tone/8-Feature CepA --- sv 15 ID 80.9 
Speaker-Independent 9-Tone/8-Feature AC --- gr 15 IL 73.4 
Speaker-Independent 6-Tone/16-Feature CepA(s) --- sv/χ2 13 ID 81.8 
Speaker-Independent 9-Tone/16-Feature CepA(0) I1-2 gr 15 ID 77.5 

Table 4-1 Parameters producing best results for all 8 systems 
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FE Feature Extraction Method 
Trim. Features Trimmed 
FW Feature Weighting Method 
CVW Class Voting Weighting Method 
AC Auto Correlation 
CepB CepstrumB 
CepB(0) CepstrumB(Zero-Addition) 
CepA(100) CepstrumA(100-Addition) 
CepA CepstrumA 
CepA(s) CepstrumA(Stretched) 
CepA(0) CepstrumA(Zero-Addition) 
I1-2 Ignore 1st and 2nd feature 
gr Gain Ratio 
sv Shared Variance 
χ2 Chi-squared 
ID Inverse Distance 
IL Inverse Linear 

Table 4-2 Legend of Abbreviations for Table 4-1 

 
 
 
 Analysis of confusion matrices helped isolate which tones were particularly easy 

or difficult to recognize.  It also provided information as to which tone pairs are most 

easily confused.  In speaker-dependent experiments, tones #1, #2, and #4 were all 

recognized much easier than the other tones.  Tone #5, on the other hand, was often 

misclassified.  In speaker-independent experiments, tone #1 was recognized extremely 

well. 

 In all experiments, the most common classification error was due to the 

recognizer’s difficulty in distinguishing among level tones.  In 6-tone systems, tones #1, 

#3, and #6 were often confused, especially between tone #3 and #6.  The addition of three 

more level tones in 9-tone systems added to the confusion, especially between tones that 

differed primarily by duration rather than contour or pitch.  Overall, tone #1 was the 

easiest tone to classify.  This is surprising as it is a level tone and predictably would be 
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confused with the other 5 level tones (i.e. tones #3, #6, #7, #8, and #9).  It is not clear 

why tone #1 is recognized easier than other tones, especially those with unique contours. 

 One major limitation throughout this study was the scarcity of data.  Only 2000 

files from 4 different speakers were available.  One speaker in particular, cs03f, speaks 

very differently than the other three speakers.  Results from this speaker were poor in 

both speaker-dependent and speaker-independent systems.  This suggests the speaker is 

not only inconsistent when compared to other speakers, but is inconsistent even when 

compared with her own speech.  With data from only four speakers available, it is unclear 

how idiosyncratic this speaker’s data is. 

 It is expected the approach used in this thesis would achieve even higher results 

when applied to the Mandarin tone recognition task.  Not only are there only four tones in 

Mandarin, but also the contours of each tone are more distinct from each other.  Limiting 

the tone recognition task to the four Cantonese tones most similar to the four Mandarin 

tones produced hypothetical results for a Mandarin tone recognizer.  Hypothetical results 

are 98.1% for a speaker-dependent system, and 92.7% for a speaker-independent system. 

 Results from using the memory-based learning approach in this study are 

comparable to the work of Tan Lee et al. (1993, 1995), in which a neural-network was 

applied to a speaker-dependent 9-tone system.  In Lee’s work, recognition accuracy of 

89.0% was achieved in a speaker-dependent system.  Using the memory-based learning 

approach as presented in this thesis, recognition rate was 90.9%.  Again, one of the four 

speakers in this study exhibited abnormal tonal contours and her recognition accuracy 

was extremely poor in comparison to results from other speakers.  Data from this speaker 

might also have weakened the training set used for recognition for other speakers’ data.  
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As a result, the recognition rate of 90.9% could be much higher depending on how 

abnormal the data is from this one speaker. 

 The system presented in this thesis can be improved upon in many ways: 1) 

finding and using an optimal number of features in each feature vector; 2) increasing the 

amount of training data; 3) using higher k-values; 4) using a more accurate feature 

extraction method; 5) adding duration elements to the process for 9-tone experiments. 

 This thesis shows that memory-based learning is a viable option for Cantonese 

tone recognition.  It also shows that absolute values can be useful to model tones instead 

of using only contours.  Memory-based approaches are bound to work increasingly better 

as computers get more powerful. 

Memory-based learning, as discussed in this thesis, could be applied to the 

recognition of other tonal languages such as Mandarin, Thai, Vietnamese, or other 

dialects of Chinese.  Work in the future might also apply this approach to more 

complicated tasks such as continuous speech. 
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APPENDIX A 
 

 1 2 3 4 5 6 % 
1 40 0 0 0 0 1 97.6% 
2 0 37 0 0 2 0 94.9% 
3 0 0 40 0 0 3 93.0% 
4 0 0 0 26 0 0 100.0% 
5 0 0 1 0 12 2 80.0% 
6 0 0 2 0 0 34 94.4% 
      AVG 94.5% 

Table 4-3 Speaker cs01f Confusion Matrix (Speaker-Dependent; 6-tone/8-feature) 

 
 1 2 3 4 5 6 % 
1 38 0 1 1 0 1 92.7% 
2 0 36 0 0 3 0 92.3% 
3 1 0 36 0 0 6 83.7% 
4 2 0 0 24 0 0 92.3% 
5 0 1 0 0 14 0 93.3% 
6 0 0 5 0 0 31 86.1% 
      AVG 89.5% 

Table 4-4 Speaker cs02m Confusion Matrix (Speaker-Dependent; 6-tone/8-feature) 

 
 1 2 3 4 5 6 % 
1 40 0 0 0 0 1 97.6% 
2 0 37 0 0 2 0 94.9% 
3 0 0 39 0 0 4 90.7% 
4 1 0 0 24 1 0 92.3% 
5 0 0 2 3 9 1 60.0% 
6 0 0 6 0 0 30 83.3% 
      AVG 89.5% 

Table 4-5 Speaker cs03f Confusion Matrix (Speaker-Dependent; 6-tone/8-feature) 

 
 1 2 3 4 5 6 % 
1 37 0 4 0 0 0 90.2% 
2 0 37 1 0 1 0 94.9% 
3 2 0 35 0 0 6 81.4% 
4 0 0 0 25 0 1 96.2% 
5 0 2 0 0 13 0 86.7% 
6 0 0 3 3 0 30 83.3% 
       88.5% 

Table 4-6 Speaker cs04m Confusion Matrix (Speaker-Dependent; 6-tone/8-feature) 
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APPENDIX B 
 

 1 2 3 4 5 6 % 
1 41 0 0 0 0 0 100.0% 
2 0 36 0 0 2 1 92.3% 
3 0 0 38 0 1 3 90.5% 
4 0 0 0 26 0 0 100.0% 
5 0 0 0 0 15 0 100.0% 
6 0 0 3 0 0 34 91.9% 
      AVG 95.0% 

Table 4-7 Speaker cs01f Confusion Matrix (Speaker-Dependent, 6-tone/16-feature) 

 
 1 2 3 4 5 6 % 
1 40 0 1 0 0 0 97.6% 
2 0 36 0 0 3 0 92.3% 
3 2 0 33 0 0 7 78.6% 
4 0 0 0 26 0 0 100.0% 
5 0 2 0 0 12 1 80.0% 
6 0 0 4 0 0 33 89.2% 
      AVG 90.0% 

Table 4-8 Speaker cs02m Confusion Matrix (Speaker-Dependent, 6-tone/16-feature) 

 
 1 2 3 4 5 6 % 
1 41 0 0 0 0 0 100.0% 
2 0 36 0 1 1 1 92.3% 
3 0 0 38 0 0 4 90.5% 
4 0 0 0 25 0 1 96.2% 
5 0 3 1 1 7 3 46.7% 
6 0 0 8 0 1 28 75.7% 
      AVG 87.5% 

Table 4-9 Speaker cs03f Confusion Matrix (Speaker-Dependent, 6-tone/16-feature) 

 
 1 2 3 4 5 6 % 
1 39 0 2 0 0 0 95.1% 
2 0 38 1 0 0 0 97.4% 
3 1 0 34 0 0 7 81.0% 
4 0 0 0 26 0 0 100.0% 
5 0 3 0 0 12 0 80.0% 
6 0 0 2 2 0 33 89.2% 
      AVG 91.0% 

Table 4-10 Speaker cs04m Confusion Matrix (Speaker-Dependent, 6-tone/16-feature) 
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APPENDIX C 
 

 1 2 3 4 5 6 % 
1 414 7 1 0 0 0 98.1% 
2 0 284 0 6 22 4 89.9% 
3 9 1 233 0 0 106 66.8% 
4 0 0 0 245 0 2 99.2% 
5 0 9 0 6 107 14 78.7% 
6 0 0 7 46 0 269 83.5% 
      AVG 86.6% 

Table 4-11 Speaker cs01f Confusion Matrix (Speaker-Independent, 6-tone/8-feature) 

 
 1 2 3 4 5 6 % 
1 402 0 20 0 0 0 95.3% 
2 1 302 0 1 10 2 95.6% 
3 15 0 301 0 1 32 86.2% 
4 0 0 0 247 0 0 100.0% 
5 0 19 0 4 113 0 83.1% 
6 0 1 44 17 12 248 77.0% 
      AVG 90.0% 

Table 4-12 Speaker cs02m Confusion Matrix (Speaker-Independent, 6-tone/8-feature) 

 
 1 2 3 4 5 6 % 
1 411 3 4 3 0 1 97.4% 
2 0 118 13 2 102 81 37.3% 
3 21 0 303 0 0 25 86.8% 
4 0 0 0 58 2 187 23.5% 
5 0 0 11 0 27 98 19.9% 
6 0 0 114 0 0 208 64.6% 
      AVG 62.8% 

Table 4-13 Speaker cs03f Confusion Matrix (Speaker-Independent, 6-tone/8-feature) 

 
 1 2 3 4 5 6 % 
1 395 0 27 0 0 0 93.6% 
2 2 296 4 0 10 4 93.7% 
3 16 2 242 1 0 88 69.3% 
4 0 0 0 246 0 1 99.6% 
5 0 50 0 1 85 0 62.5% 
6 0 5 42 28 4 243 75.5% 
      AVG 84.1% 

Table 4-14 Speaker cs04m Confusion Matrix (Speaker-Independent, 6-tone/8-feature) 



 118

APPENDIX D 
 

 1 2 3 4 5 6 % 
1 409 0 1 7 0 5 96.9% 
2 0 311 2 1 2 0 98.4% 
3 54 0 281 0 0 14 80.5% 
4 5 0 0 235 0 7 95.1% 
5 1 11 13 0 95 16 69.9% 
6 2 0 102 4 3 211 65.5% 
      AVG 86.0% 

Table 4-15 Speaker cs01f Confusion Matrix (Speaker-Independent, 6-tone/16-feature) 

 
 1 2 3 4 5 6 % 
1 406 0 11 4 0 1 96.2% 
2 0 312 0 0 4 0 98.7% 
3 33 0 266 0 0 49 76.4% 
4 97 0 0 150 0 0 60.7% 
5 1 12 1 1 120 1 88.2% 
6 0 0 41 9 0 272 84.5% 
      AVG 85.2% 

Table 4-16 Speaker cs02m Confusion Matrix (Speaker-Independent, 6-tone/16-feature) 

 
 1 2 3 4 5 6 % 
1 416 0 1 2 0 3 98.6% 
2 2 289 3 0 19 3 91.5% 
3 46 0 268 1 0 34 76.8% 
4 13 0 0 119 22 93 48.2% 
5 0 2 12 0 77 45 56.6% 
6 1 1 56 2 2 260 80.7% 
      AVG 79.7% 

Table 4-17 Speaker cs03f Confusion Matrix (Speaker-Independent, 6-tone/16-feature) 

 
 1 2 3 4 5 6 % 
1 278 1 139 2 0 2 65.9% 
2 0 260 0 1 55 0 82.3% 
3 4 1 170 0 4 170 48.7% 
4 1 0 0 241 0 5 97.6% 
5 0 3 0 4 129 0 94.9% 
6 0 2 13 12 5 290 90.1% 
      AVG 76.3% 

Table 4-18 Speaker cs04m Confusion Matrix (Speaker-Independent, 6-tone/16-feature) 
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APPENDIX E 
 

 1 2 3 4 5 6 7 8 9 % 
1 29 0 0 0 0 0 0 0 0 100.0% 
2 0 36 0 0 2 0 0 0 1 92.3% 
3 0 0 29 0 0 1 0 2 0 90.6% 
4 0 0 0 25 0 1 0 0 0 96.2% 
5 0 1 0 0 13 1 0 0 0 86.7% 
6 0 0 1 0 0 15 0 0 0 93.8% 
7 7 0 0 0 0 0 5 0 0 41.7% 
8 0 0 8 0 1 0 0 1 1 9.1% 
9 0 0 1 0 1 11 0 1 6 30.0% 
         AVG 79.5% 

Table 4-19 Speaker cs01f Confusion Matrix (Speaker-Dependent, 9-tone/8-feature) 
 

 1 2 3 4 5 6 7 8 9 % 
1 28 0 1 0 0 0 0 0 0 96.6% 
2 0 39 0 0 0 0 0 0 0 100.0% 
3 1 0 25 0 0 5 0 1 0 78.1% 
4 0 0 0 26 0 0 0 0 0 100.0% 
5 0 2 0 0 12 1 0 0 0 80.0% 
6 0 0 2 0 0 11 0 0 3 68.8% 
7 3 0 0 0 0 0 9 0 0 75.0% 
8 0 1 1 1 0 1 0 5 2 45.5% 
9 0 0 2 0 0 6 0 1 11 55.0% 
         AVG 83.0% 

Table 4-20 Speaker cs02m Confusion Matrix (Speaker-Dependent, 9-tone/8-feature) 
 

 1 2 3 4 5 6 7 8 9 % 
1 27 0 0 0 0 0 2 0 0 93.1% 
2 0 35 0 1 2 1 0 0 0 89.7% 
3 1 0 29 0 0 1 0 0 1 90.6% 
4 0 0 0 25 0 1 0 0 0 96.2% 
5 0 3 1 1 8 2 0 0 0 53.3% 
6 0 0 3 0 2 10 0 0 1 62.5% 
7 0 0 0 0 0 0 12 0 0 100.0% 
8 0 0 3 0 0 1 0 4 3 36.4% 
9 0 0 1 1 0 5 0 2 11 55.0% 
         AVG 80.5% 

Table 4-21 Speaker cs03f Confusion Matrix (Speaker-Dependent, 9-tone/8-feature) 
 

 1 2 3 4 5 6 7 8 9 % 
1 27 0 2 0 0 0 0 0 0 93.1% 
2 0 35 0 0 3 0 0 0 1 89.7% 
3 1 0 24 0 0 5 0 1 1 75.0% 
4 0 0 0 24 0 2 0 0 0 92.3% 
5 0 2 0 0 13 0 0 0 0 86.7% 
6 0 0 3 1 0 12 0 0 0 75.0% 
7 5 0 0 0 0 0 7 0 0 58.3% 
8 0 0 4 0 1 0 0 6 0 54.5% 
9 0 0 0 1 0 4 0 2 13 65.0% 
         AVG 80.5% 

Table 4-22 Speaker cs04m Confusion Matrix (Speaker-Dependent, 9-tone/8-feature) 
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APPENDIX F 
 

 1 2 3 4 5 6 7 8 9 % 
1 29 0 0 0 0 0 0 0 0 100.0% 
2 0 37 0 0 1 0 0 0 1 94.9% 
3 0 0 30 0 0 1 0 0 0 96.8% 
4 0 0 0 26 0 0 0 0 0 100.0% 
5 0 0 0 0 15 0 0 0 0 100.0% 
6 0 0 1 0 0 15 0 0 0 93.8% 
7 0 0 0 0 0 0 12 0 0 100.0% 
8 0 0 0 0 0 0 0 8 3 72.7% 
9 0 0 1 1 0 1 0 1 17 81.0% 
         AVG 94.5% 

Table 4-23 Speaker cs01f Confusion Matrix (Speaker-Dependent, 9-tone/16-feature) 
 

 1 2 3 4 5 6 7 8 9 % 
1 28 0 1 0 0 0 0 0 0 96.6% 
2 0 36 0 0 2 0 0 0 1 92.3% 
3 1 0 25 0 0 5 0 0 0 80.6% 
4 0 0 0 26 0 0 0 0 0 100.0% 
5 0 2 0 0 12 1 0 0 0 80.0% 
6 0 0 1 0 0 15 0 0 0 93.8% 
7 1 0 1 0 0 0 10 0 0 83.3% 
8 0 0 0 0 0 1 0 8 2 72.7% 
9 0 0 0 0 0 4 0 1 16 76.2% 
         AVG 88.0% 

Table 4-24 Speaker cs02m Confusion Matrix (Speaker-Dependent, 9-tone/16-feature) 
 

 1 2 3 4 5 6 7 8 9 % 
1 26 0 0 0 0 0 3 0 0 89.7% 
2 0 27 0 1 7 1 0 0 3 69.2% 
3 0 0 30 0 0 1 0 0 0 96.8% 
4 0 0 0 25 0 1 0 0 0 96.2% 
5 0 4 1 1 7 2 0 0 0 46.7% 
6 0 0 2 0 0 13 0 0 1 81.3% 
7 1 0 0 0 0 0 11 0 0 91.7% 
8 0 0 2 0 0 0 0 7 2 63.6% 
9 0 0 0 3 0 3 0 2 13 61.9% 
         AVG 79.5% 

Table 4-25 Speaker cs03f Confusion Matrix (Speaker-Dependent, 9-tone/16-feature) 
 

 1 2 3 4 5 6 7 8 9 % 
1 26 0 2 0 0 0 1 0 0 89.7% 
2 0 38 0 0 0 0 0 0 1 97.4% 
3 0 0 26 0 0 5 0 0 0 83.9% 
4 0 0 0 26 0 0 0 0 0 100.0% 
5 0 4 0 0 11 0 0 0 0 73.3% 
6 0 0 3 1 0 12 0 0 0 75.0% 
7 3 0 0 0 0 0 9 0 0 75.0% 
8 0 0 2 0 0 0 0 8 1 72.7% 
9 0 0 0 1 0 3 0 1 16 76.2% 
         AVG 86.0% 

Table 4-26 Speaker cs04m Confusion Matrix (Speaker-Dependent, 9-tone/16-feature) 
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APPENDIX G 
 

 1 2 3 4 5 6 7 8 9 % 
1 293 0 3 5 0 5 20 0 1 89.6% 
2 0 313 0 1 1 0 0 1 0 99.1% 
3 45 0 158 0 0 15 1 34 0 62.5% 
4 5 0 0 230 0 2 0 0 10 93.1% 
5 0 18 10 0 88 14 0 1 5 64.7% 
6 1 0 57 0 5 122 0 17 14 56.5% 
7 28 0 0 2 0 1 64 0 0 67.4% 
8 12 0 12 0 0 1 10 58 3 60.4% 
9 0 0 17 3 0 11 0 35 40 37.7% 
         AVG 76.2% 

Table 4-27 Speaker cs01f Confusion Matrix (Speaker-Independent, 9-tone/8-feature) 
 

 1 2 3 4 5 6 7 8 9 % 
1 314 0 6 2 0 1 4 0 0 96.0% 
2 0 311 0 0 5 0 0 0 0 98.4% 
3 37 0 187 0 0 27 0 2 0 73.9% 
4 40 0 0 181 0 0 26 0 0 73.3% 
5 1 10 1 1 122 1 0 0 0 89.7% 
6 0 0 34 4 3 171 0 0 4 79.2% 
7 59 0 0 1 0 0 33 2 0 34.7% 
8 3 0 52 0 0 13 1 20 6 21.1% 
9 0 0 17 6 0 47 0 2 34 32.1% 
         AVG 76.7% 

Table 4-28 Speaker cs02m Confusion Matrix (Speaker-Independent, 9-tone/8-feature) 
 

 1 2 3 4 5 6 7 8 9 % 
1 320 0 2 0 0 3 2 0 0 97.9% 
2 1 282 1 0 29 3 0 0 0 89.2% 
3 32 0 198 0 0 9 3 10 1 78.3% 
4 13 1 0 122 27 51 0 0 33 49.4% 
5 0 3 5 0 85 36 0 3 4 62.5% 
6 0 0 26 0 7 169 0 6 8 78.2% 
7 28 0 0 2 0 0 61 4 0 64.2% 
8 3 0 18 0 0 6 2 46 21 47.9% 
9 1 1 8 1 0 16 0 9 70 66.0% 
         AVG 75.5% 

Table 4-29 Speaker cs03f Confusion Matrix (Speaker-Independent, 9-tone/8-feature) 
 

 1 2 3 4 5 6 7 8 9 % 
1 185 0 128 2 0 2 9 1 0 56.6% 
2 0 254 0 1 61 0 0 0 0 80.4% 
3 2 0 94 0 0 125 0 9 23 37.2% 
4 1 0 0 235 0 6 0 0 5 95.1% 
5 0 5 0 5 126 0 0 0 0 92.6% 
6 0 0 9 7 0 192 0 0 8 88.9% 
7 34 1 20 2 0 0 26 12 0 27.4% 
8 2 1 37 0 7 21 0 12 16 12.5% 
9 0 0 5 10 5 35 0 5 46 43.4% 
         AVG 65.3% 

Table 4-30 Speaker cs04m Confusion Matrix (Speaker-Independent, 9-tone/8-feature) 
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APPENDIX H 
 

 1 2 3 4 5 6 7 8 9 % 
1 320 0 1 0 0 0 6 0 0 97.9% 
2 0 280 0 3 29 0 0 0 4 88.6% 
3 1 0 174 0 0 76 0 0 1 69.0% 
4 0 0 0 246 0 0 0 0 1 99.6% 
5 0 8 0 1 115 12 0 0 0 84.6% 
6 0 0 3 24 0 189 0 0 0 87.5% 
7 7 6 2 0 0 0 80 0 0 84.2% 
8 4 0 17 0 0 0 4 29 42 30.2% 
9 0 0 3 22 0 11 0 0 70 66.0% 
         AVG 83.9% 

Table 4-31 Speaker cs01f Confusion Matrix (Speaker-Independent, 9-tone/16-feature) 
 

 1 2 3 4 5 6 7 8 9 % 
1 313 0 14 0 0 0 0 0 0 95.7% 
2 0 301 0 1 9 0 3 0 2 95.3% 
3 13 0 213 0 0 24 0 0 2 84.5% 
4 0 0 0 247 0 0 0 0 0 100.0% 
5 0 8 0 2 126 0 0 0 0 92.6% 
6 0 0 42 4 9 159 0 0 2 73.6% 
7 18 0 1 0 0 0 71 5 0 74.7% 
8 4 0 37 0 0 4 0 48 3 50.0% 
9 0 1 8 5 1 31 0 3 57 53.8% 
         AVG 85.7% 

Table 4-32 Speaker cs02m Confusion Matrix (Speaker-Independent, 9-tone/16-feature) 
 

 1 2 3 4 5 6 7 8 9 % 
1 295 3 1 3 0 0 23 2 0 90.2% 
2 0 78 22 2 127 66 4 2 15 24.7% 
3 20 0 221 0 0 2 0 8 1 87.7% 
4 0 0 0 92 1 98 0 0 56 37.2% 
5 0 0 11 0 38 85 0 1 1 27.9% 
6 0 0 104 0 0 86 0 4 22 39.8% 
7 4 0 0 0 0 0 84 6 1 88.4% 
8 0 0 11 1 0 0 2 65 17 67.7% 
9 0 0 2 1 0 4 0 10 89 84.0% 
         AVG 58.5% 

Table 4-33 Speaker cs03f Confusion Matrix (Speaker-Independent, 9-tone/16-feature) 
 

 1 2 3 4 5 6 7 8 9 % 
1 308 0 19 0 0 0 0 0 0 94.2% 
2 0 295 0 1 7 0 5 1 7 93.4% 
3 12 0 176 0 0 63 0 1 0 69.8% 
4 0 0 0 241 0 6 0 0 0 97.6% 
5 0 37 0 1 98 0 0 0 0 72.1% 
6 0 0 29 7 1 178 0 1 0 82.4% 
7 24 0 1 0 0 0 65 4 1 68.4% 
8 1 2 23 0 0 6 3 47 14 49.0% 
9 0 2 1 16 0 15 0 13 59 55.7% 
         AVG 81.9% 

Table 4-34 Speaker cs04m Confusion Matrix (Speaker-Independent, 9-tone/16-feature) 
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