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Abstract

This paper introduces a system that processes clinical trials using a combination of natural
language processing and database techniques. We process web-based clinical trial recruit-
ment pages to extract semantic information reflecting eligibility criteria for potential par-
ticipants. From this information we then formulate a query that can match criteria against
medical data in patient records. The resulting system reflects a tight coupling of web-based
information extraction, natural language processing, medical informatic approaches to clin-
ical knowledge representation, and large-scale database technologies. We present an eval-
uation of the system and future directions for further system development.
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1 Background and overview

As electronic texts become more available to researchers (and humans in general),
an interesting dichotomy has emerged. On one hand, Web textscater to users’ abili-
ties to read and analyze that information; Web publishers design the data’s structure
to be easy for humans to digest. Hence it must adhere to conventional syntactic and
semantic constraints of the users’ natural language. On theother hand, humans have
very limited computational capacity for analyzing the vastamounts of electronic
information now available. Information extraction research focuses on helping hu-
mans access and process large quantities of Web data. Often this work involves
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devising new strategies and algorithms to convert electronic natural language text
into various formats that feed subsequent automatic processing.

The task is complicated by several types of textual layout formats. Text is often
classified into one of three categories: unstructured (or free), structured, and semi-
structured [1]. Unstructured text is the most natural for humans to process, but
treating the information automatically is nontrival. Structured text is stored in a
very rigid format (e.g. a database or a table) and hence more readily processed
automatically, but is often less natural for humans to work with. Semistructured
text falls somewhere in between; some structure is imposed—often just enough
to render it not quite grammatical—though not enough to helpin automatically
processing the contents. With the advent of various markup languages and other
annotation conventions, Web text often includes other extratextual information that
may or may not aid in extracting information. In this paper wediscuss processing
a repository of semistructured medical text.

Researchers design information extraction systems to perform various tasks, and
these tasks require various levels of linguistic processing. Some systems are only
concerned with parsing out the extracted information and therefore only require
the use of a syntactic parser. Others need more in-depth processing and include
a semantic component that can give some meaning to the extracted information.
Yet other systems are dependent on real-world knowledge andrequire a pragmatic
component to relate the data gathered from the system to outside information.

One area receiving recent attention is the medical domain. Much of the natural lan-
guage processing (NLP) research done with medical literature has involved devel-
oping systems that extract different types of relationships from text. For example,
NLP techniques have been used to extract interesting and novel relationships from
Medline1 abstracts. The Medline repository contains vast amounts ofuseful in-
formation about various disease- and health-related issues. Many researchers have
succeeded in extracting various types of relationships found in this repository, in-
cluding gene relations [2], protein relationships [3,4], acronym-meaning pairs [5],
abbreviation definitions [6], and molecular binding relationships [7].

For its part, the field of medical informatics has produced large-scale resources,
largely in database format, that specify the vast knowledgerequired for medical
research and patient services. Highly specialized tools for representing clinical
information and patient data have also been developed. Unfortunately, there has
been only a modest amount of crossover between the NLP and medical informatics
fields. The topic of information extraction is a salient one for demonstrating how
applications can leverage the developments from both fields.

This paper describes our approach to identification, extraction, and query formula-
tion of information regarding medical clinical trials. Figure 1 shows an overview

1 See http://www.medlineplus.gov.
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of the system. In Step 1, extraction and formula generation,we extract patient cri-
teria from a web-based natural language description of qualifications for clinical
trial participants, and create predicate logic expressions (PLE’s) that reflect the se-
mantic content of the text. In Step 2, code generation, the system processes parsed
criteria and their PLE’s. The system then attempts to map thecriteria to concepts
in an electronic medical record. For the criteria that map successfully, the system
outputs appropriate logic for computing patient eligibility. In Step 3, eligibility as-
sessment, the system evaluates the eligibility of a potential participant by executing
the logic generated in Step 2 against that patient’s electronic medical record. The
system generates a report that can help a clinician make an informed decision about
whether to further evaluate the patient for enrollment in the clinical trial.

In Section 2 we describe Step 1 of the system, which involves the NLP component.
Section 3 describes the subsequent medical records database query component. We
then discuss the system evaluation in Section 4. Finally, wesketch ways the system
could be enhanced in the future to provide better results.

Fig. 1. System processing stages including data formats (input, intermediate, and output).

2 Extraction and formula generation

The domain that our system addresses is clinical trials, which medical profession-
als use as a tool to assess diagnostic and therapeutic agentsand procedures. Such
trials require voluntary human subjects to undergo the new treatments or receive
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experimental medications. With the increasing cost of bringing experimental new
drugs to the public, there is a crucial need for improving andautomating access to
the information in clinical trials including the directed recruitment of experimental
participants, which is otherwise costly and labor-intensive.

Greater enrollment of subjects leads to greater confidence in the experimental re-
sults, but identifying ideal participants is costly and time-consuming. Trials often
have very specific criteria for age, gender, state of a given disease, number and
types of co-existing diseases, and trial timeframe/location.

Eligible potential participants are identified in various ways. One way is for clin-
icians to recommend their own patients. This results in few recommendations,
though, since the clinician is limited to current patients and must be aware of which
trials are soliciting patients.

Another common method for identifying candidates is through advertisements dis-
tributed via television, radio, the internet, newspapers or magazines. This method
reaches a large number of people, including those who are notseeing a clinician.
Disadvantages include the high cost of advertising, the inability of the general pub-
lic to understand and self-diagnose complex technical criteria, and the cost and time
involved in having a clinician screen applicants as potential participants.

A third method for identifying candidates is a systematic review of medical records.
Screeners with some clinical training can perform this work, though it is laborious
and costly. Furthermore, the patient information may be out-of-date or incomplete,
so in-person evaluations are usually necessary. Since patient medical data is in-
creasingly available in electronic form, a variation on this third approach is becom-
ing increasingly feasible. Automated processes can sift through the available data,
identifying possible trial participants.

In this section we first discuss the web corpus we have targeted. Then we sketch
the first stage of the system—how the pertinent text is processed by the NLP com-
ponents of the system.

2.1 The corpus: clinical trials

From 1997 to 1999 the U.S. National Library of Medicine (NLM)and the National
Institutes of Health (NIH) developed an online repository of clinical trials [8]. This
repository currently contains about 25,000 trials which are sponsored by various
governmental and private organizations2 ; the repository receives about 12,000,000
page views per month3 .

2 See http://www.clinicaltrials.gov.
3 See http://www.clinicaltrials.gov/ct/info/about.
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Providers develop web pages for the clinical trials websiteusing a simple user
interface4 including a text box for the eligibility criteria. No formatrestrictions
are currently enforced on the text, though some boilerplatematerial can be entered
(e.g. patient ages and gender) via dropdown boxes.

Each trial in the online repository comprises a series of sections that contain spe-
cific information regarding the trial that is useful to providers and patients. Figure 2
shows a sample web page for an individual clinical trial and the hierarchy of differ-
ent components it contains.

For this paper we extract information from one section of theweb page: the El-
igibility section. This section contains a listing of the requirements that a person
must satisfy in order to participate in the trial. For example, nearly every eligibility
section specifies the patient age and also the gender.

Each web page undergoes two levels of preprocessing: (i) locating, retrieving, and
converting the Eligibility section to an XML format with each item embedded in
<criterion> tags; and (ii) manipulating the natural language text of some cri-
teria to enable further processing. Often eligibility criteria are expressed telegraph-
ically, for example with elided subjects or as standalone noun phrases. Parsing
works best on full sentences, but only a small percentage have eligibility criteria
structured as complete sentences. For elided subjects, a dummy subject and verb
(i.e. A criterion equals...) are prepended to the criterion.

In other instances the first word in the criterion needs to be nominalized in order to
produce a grammatical sentence. For example, the criterionable to swallow cap-
sules is reformulated asan ability to swallow capsules, and then the dummy subject
and verb are prepended.

Figure 2 shows an example clinical trials web page, its corresponding XML version,
and the linguistically-annotated rendition of its eligibility criteria.

2.2 Deriving syntactic and semantic information

The next step in the process involves using a syntactic parser to process the natural
language criteria and produce a corresponding syntactic representation. We use the
link grammar (LG) parser [9]. We chose this tool because of its open-source avail-
ability, efficiency, robustness in the face of ungrammaticality and out-of-vocabulary
words, and flexibility5 .

Most traditional parsers are based on theoretical approaches to syntactic constituency

4 See http://prsinfo.clinicaltrials.gov/elig.html.
5 See http://www.link.cs.cmu.edu/link.
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(a) Clinical trial web page NCT00042666.
<criteria trial="http://www.clinicaltrials.gov/ct/show/NCT00042666">
<criterion>
<text>Eligibility</text>
<text val="1">Ages Eligible for Study: 18 Years and above,</text>

</criterion>
<criterion>
<text>Eligibility</text>
<text val="2">Genders Eligible for Study: Both</text>

</criterion>
... (ADDITIONAL CRITERIA) ...

<criterion>
<text>Eligibility</text>
<text>Criteria</text>
<text>Exclusion Criteria:</text>
<text val="6">More than 3 prior treatments for this disease.</text>

</criterion>
<criterion>
<text>Eligibility</text>
<text>Criteria</text>
<text>Exclusion Criteria:</text>
<text val="7">Serious heart problems.</text>

</criterion>
</criteria>

(b) Criteria annotated with XML tags.

1. A criterion equals an age greater than 18 years.
2. A criterion equals both genders.
3. A criterion equals a diagnosis of recurrent or
refractory Diffuse B-Cell Non-Hodgkin’s lymphoma.
4. A criterion equals adequate organ functions.
5. A criterion equals an ability to swallow capsules.
6. A criterion equals more than 3 prior treatments for
this disease.
7. A criterion equals serious heart problems.

(c) Criteria with linguistic elements added.

Fig. 2. Portion of clinical trial NCT00042666 and preprocessed versions of eligibility cri-
teria.
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Table 1
Differences between dependency and link grammars

Dependency Grammar Link Grammar

Notion of a root word No notion of a root word

Links are not labeled Links are labeled

Dependencies exist between heads & dependentsLinks are undirected

Cycles are not allowed in the structure Links may form cycles

Grammar rules are dependency rules Grammar rules are lexical rules

and consequently produce phrase-structure trees that encapsulate these assump-
tions. For information extraction purposes, such parsers are often too time-consuming
to execute, are too complex to manage, and produce output that is too detailed for
efficient downstream use. Recently dependency parsers and statistical-based ap-
proaches have become more widely used to parse text for run-time applications.
The LG parser is similar to a dependency-based parser, though subtle differences
exist. The differences between dependency and link grammarparses are summa-
rized in Table 1; a more complete discussion is found in [10].

The system reads in a .txt file containing each criterion (as extracted from the XML
file described above) on a separate line in the file and parses each sentence individ-
ually. Because of structural ambiguities in English, a single input sentence might
produce multiple parses; in this project, we only consider the highest-scored parse
for subsequent processing. Figure 3 shows how a parse ofA criterion equals seri-
ous heart problems. is represented syntactically by the LG parser. Different labeled
links connect the words in the sentence in a way that expresses their dependen-
cies. These links are the key to the next step, extracting thesemantic meaning from
the syntactic output. Three properties characterize a successful parse: planarity (i.e.
links cannot cross), connectivity (i.e. links must indirectly connect all words to-
gether), and satisfaction (i.e. the link-word correspondences must follow the gram-
mar’s specifications). However, the LG parser will often output a partial parse even
when a complete parse is impossible; this property is leveraged whenever necessary
in subsequent processing.

Once syntactic parsing of a sentence has been completed, thesentence is analyzed
by the syntax-to-semantics conversion engine. This is a component (that was pre-
viously developed for other applications) specifically designed to take the output
from the LG parser and convert its content to PLE’s (though other semantic for-
mats are also supported by the system).

The engine is built on Soar6 , a rule-based symbolic intelligent agent architecture
that uses a goal-directed, operator-based approach to problem solving [11,12]. The

6 Freely available at http://sitemaker.umich.edu/soar/home.
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Table 2
Sample predicate logic expressions output by LG-Soar

Original Source LG-Soar Output

Adenocarcinoma of the pancreas adenocarcinoma(x)& of(x,y)

& pancreas(y)

Brain metastasis brain_metastasis(x)

Femoral neck osteoporosis femoral(x)& neck_osteoporosis(x)

Pregnancy pregnancy(x)

High risk of VTE VTE(x) & risk(y) & of(y,x) & high(y)

Controlled COPD controlled(x)& COPD(x)

Genders eligible for Study: Femalefemale_gender(x)

system involves hierarchical on-line machine learning to “chunk up” prior actions,
creating new operators which can be invoked recognitionally when situations arise
that are similar to those encountered in prior experience [13].

For the task at hand, sentences are fed one-by-one from the LGparser output to the
Soar engine. For the highest-scoring parse, all words and links with their associated
labels are created on the agent’s input buffer. The system creates a discourse model
and populates it with concepts representing each entity, property, and action (or
state) derivable from the lexical and link content of the input. The relationships
between these concepts are annotated, and the result is a data structure encoding
the salient semantic features of the input sentence.

The engine then executes operators (specified via several dozen pertinent hand-
crafted rules) to map components of the discourse semantic model to equivalent
logical predicates and their associated arguments. Variables are generated for pred-
icates to specify with appropriate arity which referents the predicates refer to. The
system attempts to build nominal compounds, which are frequent in the domain,
based on the link specifications. Table 2 shows some sample input fragments with
corresponding PLE’s.

Further pursuing our criteria from Figure 2, the parsed sentenceA criterion equals
serious heart problems. would yield the PLE: “criterion(N2) & serious(N6) &
heartproblems(N6) & equals(N2,N6)”. Note that the dummy subjectand verb,
which were added for parsing purposes, are present in the PLE. For this reason, a
postprocessing stage removes this extraneous information. Then the resulting PLE
is placed in the abovementioned XML file.

Figure 3 illustrates the parse, its PLE, and the XML file afterthe NL processing
stages have finished.

8



    +----------------------------Xp---------------------------+
    |                       +-------------Op------------+     |
    +-----Wd-----+          |        +---------A--------+     |
    |     +--Ds--+----Ss----+        |        +----AN---+     |
    |     |      |          |        |        |         |     |
LEFT-WALL a criterion.n equals.v serious.a heart.n problems.n . 

       LEFT-WALL      Xp      <---Xp---->  Xp        .
 (m)   LEFT-WALL      Wd      <---Wd---->  Wd        criterion.n
 (m)   a              Ds      <---Ds---->  Ds        criterion.n
 (m)   criterion.n    Ss      <---Ss---->  Ss        equals.v
 (m)   equals.v       O       <---Op---->  Op        problems.n
 (m)   serious.a      A       <---A----->  A         problems.n
 (m)   heart.n        AN      <---AN---->  AN        problems.n
       .              RW      <---RW---->  RW        RIGHT-WALL

(a) Link grammar output for a criterion’s sentential form.

(b) Predicate logic expressions before and after postprocessing.

<criteria trial="http://www.clinicaltrials.gov/ct/show/NCT00042666">
<criterion>
<text>Eligibility</text>
<text val="1">Ages Eligible for Study: 18 Years and above,</text>
<pred val="1">age(N4) &amp; quantification(N5,greater_than)

&amp; measurement(N4,N5) &amp; units(N5,years)
&amp; magnitude(N5,18)</pred>

</criterion>
<criterion>
<text>Eligibility</text>
<text val="2">Genders Eligible for Study: Both</text>
<pred val="2">both_genders(N4)</pred>

</criterion>
... (ADDITIONAL CRITERIA) ...
<criterion>
<text>Eligibility</text>
<text>Criteria</text>
<text>Exclusion Criteria:</text>
<text val="7">Serious heart problems.</text>
<pred val="7">serious(N6) &amp; heart_problems(N6)</pred>

</criterion>
</criteria>

(c) XML file with tagged predicate logic expressions added.

Fig. 3. Final result of natural language processing stages.

3 Query generation

Once the source web page has undergone the NL processing techniques described
above, the resulting extracted information feeds a database query stage to match
them with patient medical records. In this section we can only briefly mention the
technologies germane to the task at hand; more details are available elsewhere [14].
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3.1 The target

Medical information systems manage patient information for a wide variety of tasks
including patient care, administration (e.g. billing), research, and regulatory report-
ing. Coded medical vocabularies have been developed in order to ensure consis-
tency, computability, and sharability. Often they are conceptually based and have
associated lexicons or vocabularies which are sometimes hierarchical in nature.
For example, the SNOMED-CT [15] coded vocabulary has a code “254837009”
that represents the concept “breast cancer”.

Representing patient data usually requires more information than simple concepts.
A data model called a detailed clinical model defines relationships between coded
concepts or (other data values) and information of clinicalinterest. For exam-
ple, a detailed clinical model might define a diagnosis in terms of a type and a
subject/person, so that a statement “The patient has breastcancer.” could be en-
coded with the diagnosis type from SNOMED-CT as described above, and the
subject/person with the relevant patient ID number. Detailed clinical models thus
combine coded concepts into meaningful expressions of a higher-order nature. We
make extensive use of both coded concepts and detailed clinical models in the con-
cept mapping process shown in Step 2 in Figure 1.

The target electronic medical record for this project is Intermountain Health Care’s
Clinical Data Repository (CDR)7 . The CDR makes extensive use of coded vo-
cabularies; it also defines detailed clinical models using Abstract Syntax Notation
One (ASN.1) [16], an ISO standard for describing electronicmessages [17], includ-
ing binary and XML encodings for many different applicationareas ranging from
telecommunications to genome databases.

All coded concepts in the CDR are drawn from IHC’s HealthcareData Dictionary
(HDD) [18], a large coded vocabulary (over 800,000 conceptswith over 4 million
synonyms). The names of all the detailed clinical models used in the CDR and the
fields they contain are defined as concepts in the HDD.

The CDR comprises a database and its associated services. Besides providing a
common access mechanism (for security, auditing, and errorhandling), the services
crucially provide for handling of detailed clinical modelsas the basis for informa-
tion access and retrieval. For example, an application can pass an instance of a
detailed clinical model to the services, which will then return relevant instances of
other detailed clinical models.

7 See http://www.3m.com/product/information/Clinical-Data-Repository.html. Inter-
mountain Health Care (IHC) is a regional, nonprofit, integrated health system based in Salt
Lake City, UT. The CDR is the result of a joint development effort between IHC and 3M
Health Information Systems.
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One of the outputs of Step 2 in Figure 1 is executable logic in Arden Syntax format
[19], an ANSI standard for handling medical data. Arden Syntax is written in units
called medical logic modules (MLMs). Each MLM contains the logic necessary
for making one medical decision. One category of information in an MLM defines
knowledge required for making clinical decisions; this category is what we use in
this project. The most significant slots in this category arethe data slot and the logic
slot. The data slot contains mappings of symbols used in an MLM to data in the
target electronic medical record. The logic slot, as its name implies, contains the
logic that operates on the data.

Finally, since electronic medical records vary widely in content and structure across
applications, it has been useful to use an abstraction called the virtual medical
record (VMR) [20]. This assures that any number of healthcare organizations can
write, maintain, and share clinical decision logic no matter what the structure of
their own repositories. For eligibility criteria we use a small subset of VMR at-
tributes called observations.

3.2 Concept mapping

The process outlined in Step 2 of Figure 1 takes the XML file described above
as input. It attempts to map each criterion to concepts and data structures in the
target electronic medical record. For each successful mapped criterion we generate
executable code for determining if any patients meet the criterion.

Since IHC’s CDR stores clinical data as instances of clinical models with coded
concepts, and since all coded concepts are in the HDD, the mapping task involves
matching words and phrases from the eligibility criteria toconcepts in the HDD
that represent either names or values in detailed clinical models.

The concept mapping portion of the system thus iterates through each criterion,
attempting to map it to coded concepts from the HDD used in theCDR’s detailed
clinical models. The system uses multiple matching strategies executed sequen-
tially, and once a match is found, subsequent matches are notsought. Seven deci-
sion points formulate the matching strategy; we sketch eachbelow.

(1) Execute special case handling. We use string comparisons and regular expres-
sion matching for predictable boilerplate material (e.g. age and gender).

(2) Match the raw text of a criterion to concepts in the database, in case subse-
quent processing does not succeed. Note that these two stepsdo not require
PLE’s, and thus are executed for every criterion. The remaining steps, how-
ever, are executed only for criteria that are successfully parsed into predicate
calculus formulas.

(3) Match predicate names to the HDD. For example, the criterion “heart disease”
yields the formula: heart(x) & disease(x). In this stage themapper retrieves the
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best coded concept from the HDD that includes both predicatenames.
(4) Match the predicate with a measurement. Measurements are extracted as pred-

icates; they include magnitudes, units, and other information. Here the crite-
rion “LDL-C 130-190 mg/dL” is successfully matched to a query that searches
LDL-C measurements (a valid HDD concept) in medical recordsand returns
those within the acceptable range.

If the full matches above are not possible, partial matchingis then tried.

(5) Match name-value pairs. The predicate names are processed to find possible
name-value pair relationships. For example, the criterion“diagnosis of ap-
pendicitis” does not map to a single concept in the HDD, but itdoes map to
concepts in the CDR. Furthermore, the HDD recognizes “diagnosis” as a valid
name for a clinical observation, and “appendicitis” as a valid value. We thus
combine them to form a name-value pair.

(6) Match a conjunction/disjunction. Often criteria are conjoined, and in such
cases we process all elements. For example, the elements of the criterion
“Hyperthyroidism or hypothyroidism” are mapped separately and then related
with the relevant operation (conjunction or disjunction).

(7) Partial match. The best possible match with all available predicate names is
attempted, preferring nouns over other parts of speech. Thus, for example, a
criterion “active neoplasms” would not match on the predicate “active” but
would on the other one, “neoplasm”. This heuristic is generally useful, though
not always correct. For example, in the concept “renal disease,” the adjective
“renal” is more useful than the noun “disease”.

3.3 Code generation

The second stage of Step 2 is code generation, where we generate executable code
from the output of the concept mapping process. The code thatwe generate for
this project is an Arden Syntax MLM (Medical Logic Module) that specifies VMR
queries for data access8 . The process has two steps.

The first step takes place in tandem with the mapping process described above.
Each database mapping for a criterion spawns a related VMR query. Abstracting
away from the details, this process can be summarized as a rather straightforward
conversion from and to nested attribute/value structures.

The second and subsequent step in generating code involves creating the Arden
Syntax MLM. For each criterion that does not have a mapping tothe target elec-
tronic medical record, we generate a comment stating that this criterion could not

8 Generating code in a different language would only require an appropriate reimplemen-
tation of the generator interface.
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be mapped, but we do not generate any executable code. For thecriteria that do
have mappings, we generate an Arden Syntax “read” statement. The VMR queries
generate a non-empty return value when the criterion is satisfied. After iterating
through the criteria, we generate code that writes out the results.

Even though the vast majority of slots in an MLM are required by the specification,
only a handful are useful for machine execution; most of the remaining slots are
intended for human perusal. Therefore, for this project we populate only the small
number of slots that are useful for automated processing, primarily in the knowl-
edge category slots for type, data, and logic. The only validvalue for the type slot
is “data-driven”, so we populate it appropriately.

To generate the data slot, we iterate through the eligibility criteria. For each cri-
terion that does not have a mapping to the target electronic medical record, we
generate a comment stating that this criterion could not be mapped, but we do not
generate any executable code. For the criteria that do have mappings, we generate
an Arden Syntax “read” statement. The VMR queries generate anon-empty return
value when the criterion is satisfied. After iterating through the criteria, we generate
code that writes out the results.

The third code generation step, assessing the applicability of an encoded criterion,
involves the straightforward querying of electronic patient records. A report sum-
marizes for the clinician which criteria parsed and matchedthe stated values. Figure
4 shows an Arden Syntax VMR query and a sample eligibility report.

Note that the system as currently configured runs in batch mode, so except for the
report just mentioned, the end-user context remains speculative at this point. Any
eventual user protocols and interfaces would depend on the scenario implemented.
We envision that the system could be used in a number of different ways. It could
drive a process that searches through a large collection of patient records, looking
for candidates for a given trial. A threshold could be set forthe percentage of criteria
necessary for suggesting a given patient for further consideration. Alternatively, a
threshold could specify the number of patients to suggest for the trial in question.
Another use of the MLM would be to incorporate it in a process that evaluates
patient records after a patient schedules an appointment and before the visit, so that
the clinician can suggest possible trial participation during the visit.

4 Evaluation results

In order to evaluate the natural language PLE output of the LG-Soar system, we
performed a preliminary standalone evaluation of that stage of processing [21]. We
followed the logical form identification evaluation methoddeveloped by organiz-
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Criterion1 := READ {
<VMRQuery class="Observation">

<value op="equals">
<cd code="1450395" displayName="heart disease"/>

</value>
</VMRQuery>

(a) A sample Arden Syntax read statement containing a VMR query.

Eligibility Report

Header

Title of Trial A Study of Oral LY317615 in Relapsed or Refractory

Diffuse & Large B-Cell Non-Hodgkin’s Lymphoma

Patient Name J. Doe

Medical Record # 1234567

Eligibility Summary

Criteria met 6

Mapped Criteria for which eligibility could not be determined 7

Criteria not mapped 5

Total criteria 18

Criterion Detail

Criterion 1

...

Criterion 3

Criterion LDL-C 130-190 mg/dL

Mapped Yes

Status Patient meets this criterion

...

Criterion 11

Criterion Heart disease

Mapped Yes

Status Unable to determine if patient meets this criterion

(b) Portion of sample eligibility report.

Fig. 4. Results for query generation and assessment stages.

ers of the Senseval-3 competition9 . This was the first standardized logical form
identification evaluation task, and the organizers developed a gold standard and an
open-source evaluation tool for assessing PLE identification for a selection of texts
10 . The results are returned in terms of precision and recall for both predicates and
for their arguments.

In order to test this part of the system, we randomly selectedtwelve different tri-
als from the clinical trials website. From these trials, 102criteria were extracted

9 See www.senseval.org.
10 See http://www.cs.memphis.edu/ ˜vrus/.

14



Table 3
Preliminary LG-Soar PLE extraction results

Precision Recall F-Measure

Argument 70% 61% 65%

Predicate 65% 63% 64%

and, after exact duplicates were removed, a total of 77 criteria remained. These 77
criteria were run through the system, and 34 were successfully parsed. For these
criteria, we thus achieved the results shown in Table 3. Though the results fall short
of predicate extraction from newspaper texts (around 90%),it compares favorably
with other kinds of information extracted in the medical domain (see [3]).

Encouraged by these results, we recently carried out an end-to-end system perfor-
mance evaluation involving both the natural language and code generation compo-
nents. From www.clinicaltrials.gov we randomly chose one hundred unseen clini-
cal trials and ran them through Steps 1 and 2 in Figure 1. Afterwards we manually
inspected each report, comparing them to the generated queries, and characteriz-
ing their success or failure. We tallied these results numerically, and a summary
appears in Figure 5.

The 85 parsable trials varied in size and complexity, havingfrom 3 to 71 criteria
per trial. They also varied widely in subject matter, covering conditions from cancer
to infertility to gambling. Two main factors induced failure in 15 trials: some had
unexpected special characters (e.g. the HTML character “&#252;” representing the
umlat u character), and others had sentences so complex thatthe parser failed.

Trials evaluated 100

Trials successfully completing Steps 1 & 2 85

Criteria extracted 1545

Criteria parsed into logical forms 473

Criteria parsed but not mapped into queries49

Queries generated 520

Completely correct queries 140

Other useful queries 113

Technically correct queries 4

Incorrect queries 263

Fig. 5. Results from end-to-end system evaluation.

These 85 trials yielded 1,545 eligibility criteria; logical forms were successfully
created for 473 of these criteria. All but 49 of these yieldedqueries, and another

15



Processing stage Heuristic/Assumption Challenges/Issues

Retrieve criteria Standard tokenization Ad-hoc abbreviations

Convert to XML Scripting (Perl/Python) —

Make full sentence Elision predictable Some ill-formed input

Parse sentence LG parser + scoring Some sentences fail to parse

Extract predicates Soar linguistic agent Negation, modals, quantifiers

Postprocess predicates Scripting —

Map concepts to HDD String matching HDD coverage, match cost

Create query structures Recursive descent Execution time/complexity

Create query statementsArden Syntax Defining relevant subset

Query patient records Existing software Patient data completeness

Generate final report Scripting End-user usefulness

Fig. 6. Summary of processing stages with relevant assumptions and issues.

96 queries could be generated without logical forms, so a total of 520 queries were
formulated. Of these, 140 completely and exactly represented their original eligi-
bility criteria. Another 113 of the queries were not entirely correct or complete but
still yielded useful information for clinician decision-making. Four queries were
technically well-formed based on the logical form though did not reflect the intent
of the original criteria. In total, 257 queries were either completely correct, usefully
correct, or technically correct. The remaining 263 querieswere neither correct nor
useful in determining eligibility.

Figure 6 summarizes the system’s processing stages along with their associated
heuristics, assumptions, challenges, and issues.

5 Discussion and future work

Our experimental system demonstrates that some degree of automatic evaluation
of eligibility criteria is feasible. The system currently generates useful queries for
about half of the number of criteria that produce formulas. We are encouraged
by these preliminary results, and anticipate that planned improvements like those
discussed below will substantially increase system accuracy and performance.

One limitation of our end-to-end evaluation was the involvement of only one re-
searcher, the only team member qualified enough in all three areas of medicine,
medical informatics, and computer science to be able to assess the correctness of
the queries formulated by the system. These findings could bestrengthed by in-
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volving other independent testers and calculating the inter-rater reliability.

One issue has been the consistent authoring of parsable natural language statements
by data providers. Tighter editorial controls could help solve this problem. A solu-
tion less intrusive to the users would be to develop collection of medical knowledge
in the form of potentially reusable ontologies and axioms that could be used to as-
sist in bridging the gap.

Currently dummy subjects are added to the usually terse criteria in order to cre-
ate full grammatical sentences; sometimes, though, there are already complete sen-
tences that this preprocessing strategy renders ungrammatical. More intelligent pre-
processing could help in determining when dummy subjects are in fact required.

So far we have done little to customize the LG parser for our purposes, and we
foresee improving it in at least three ways: (i) extending the range of acceptable
grammatical structures; (ii) refining the parse scoring algorithm to return the most
plausible parse; and (iii) integrating it with a large-scale medical lexicon as oth-
ers have done [22]. Currently the semantics engine only handles certain syntactic
structures—far less than those provided by the LG parser. Wehave also not yet
experimented with the semantic engine’s inherent machine learning capabilities.

In several cases the system correctly mapped the name portion of a pair, but in-
correctly mapped the value portion, rendering the query incorrect. For example,
consider the criterionblood products or immunoglobulins within 6 months prior to
entering the study. The system found a mapping to an appropriate concept, “blood
products used”; it also found a mapping to the valid concept “months”. However,
the latter is not a permissible value for the former, so processing failed. If appro-
priate constraint checking could mediate name-value pairings, the system would be
able to more gracefully reformulate such instances.

The synonyms supplied by the HDD produced frequent successes, but occasional
ambiguity proved problematic. The system mapped the abbreviation “PCP” to the
drug “phencyclidine”, whereas the trial intended “pneumocystic carinii pneumo-
nia”. It also mapped “PG” to “phosphatidyl glycerol” whereas the trial used it in an
ad-hoc fashion for “pathological gambling”.

Often unsuccessful queries reflected an absence of relevantconcepts from the HDD.
This is not unexpected, given the domain’s focus on experimental medications. We
could use additional sources of clinical concepts such as the National Library of
Medicine’s Unified Medical Language System [23] or a database of experimental
drugs. New concepts, though, would not be helpful unless patient records contain
such concepts, which is unlikely.

Several queries provided partial information that was useful, but could not fully
assess eligibility. For example, the system mapped the criterion “uterine papillary
serous carcinoma”, to the concept “papillary carcinoma”. Matching “papillary car-
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cinoma” in a patient’s record does not necessarily satisfy the criterion, but it could
suggest further action by a clinician.

With some criteria a match will never be possible. EMR’s typically do not store
patient information that would reflect such criteria as “plans to become pregnant
during the study” or “male partners of women who are pregnant”.

Criteria we missed could be evaluated based on data in the EMR, by adding further
inferencing with external knowledge. For example, “meets psychiatric diagnostic
criteria for depression” requires the system to know what these diagnostic criteria
are before this criterion can be evaluated.

Another possibility for improving the system includes mapping criteria to more
VMR classes than just the observation class. This would facilitate more accurate
queries against information such as procedures, demographics, and medications.

Finally, the scalability and portability of the system and the approach should be fur-
ther investigated. We purposely chose a relatively technical, narrow, and data-rich
domain to address in this prototype work. One might naturally wonder how success-
ful the system would be when (i) processing other data repositories (vs. the clinical
trials website), (ii) focusing on other topics (e.g. intelligence gathering), (iii) pro-
cessing other natural languages than English, (iv) utilizing other knowledge sources
(e.g. different terminological databases), and (v) leveraging other components (e.g.
another NL parser or predicate extraction engine).

The scalability question is the easiest to answer. Given thelarge-scale knowledge
sources already in use (i.e. the HDD and a substantial lexicon for the LG parser), the
efficiency of the NL components, and the fact that the system runs in batch mode
performing an offline process, the system is especially scalable in terms of process-
ing resources required. Addressing the many areas for further development listed
earlier in this section should help improve the scalability, as well as the accuracy,
of linguistic performance and query generation.

We are also cautiously optimistic about the system’s portability. Having already in-
corporated extensive medical knowledge into the system, weare confident that the
system would perform well on related problems. For example,another separate—
but extensive—clinical trials website exists solely for documenting over 5,000 can-
cer trials11 ; the system would perform well on information stored there,with
minimal infrastructure adaptation. Since the latter half of the system is built on
medical informatics technologies, its usefulness would belimited for non-medical
applications. However, the first half of the system (the LG parser/Soar nexus for
performing syntactic/semantic analysis) effectively extracts PLE’s from newspaper
headlines [24] and biographical/genealogical data from text [25]. We have also in-
tegrated a Link Grammar parser for the Persian language withthe Soar engine to

11 See www.cancer.gov/clinicaltrials.
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extract predicates of interest from Persian newswire text [26]. Our system is modu-
lar enough that other specialized parsers and/or predicateextraction engines could
replace ours if this were deemed necessary for treating other domains.
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